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Chaotic neural control

A. Potapov and M. K. Ali
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~Received 26 June 2000; published 29 March 2001!

We consider the problem of stabilizing unstable equilibria by discrete controls~the controls take discrete
values at discrete moments of time!. We prove that discrete control typically creates a chaotic attractor in the
vicinity of an equilibrium. Artificial neural networks with reinforcement learning are known to be able to learn
such a control scheme. We consider examples of such systems, discuss some details of implementing the
reinforcement learning to controlling unstable equilibria, and show that the arising dynamics is characterized
by positive Lyapunov exponents, and hence is chaotic. This chaos can be observed both in the controlled
system and in the activity patterns of the controller.
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ics
al
n
ed
c

e
le
bl
in

e

B
re
hi
s
y
m
e

e
st
at

o
m
e
s
gi

r o
o
s.
n
c

ica
it
ao

d

ical
s of
for
ch

are
ard

olv-
ing
ma-
ent
s

he
pt
ns,
b-

ve
rk.

ap-
the
h a
For
ed
ore
ec.
sic
IV.
ed,

ult-
of
a
in

os-
y be
s a
re

s in
in-
lo-
er-
I. INTRODUCTION

In this work, we study the characteristics of dynam
generated by discrete controls of unstable equilibria, and
focus on neural network learning techniques for impleme
ing such controls. It is well known that a properly design
control can suppress chaos. We prove that under certain
cumstances control of an unstable fixed point can give ris
a chaotic attractor even in linear systems. The main prob
is, how do we find a control that can stabilize an unsta
fixed point? It turns out that there are methods in mach
learning and artificial neural networks@1,2# that can solve
this problem. In fact, examples of systems that can learn
perform such a control have been known for a long tim
e.g., @3#. Nonetheless, the nature~regular or chaotic! of dy-
namics involved in such controls has not been studied.
analyzing dynamical regimes, we show that, under disc
controls, chaos necessarily appears in the process of ac
ing desired~meaningful! goals of the control. Such control
are of interest in the field of artificial neural networks. B
applying the technique of reinforcement learning, we de
onstrate that neural networks can be trained to realize th
controls.

Although our goal in this work is not to explain how th
brain works, we would like to digress briefly to some exi
ing works on brain dynamics, because it may be associ
with both chaos and control. Currently, we are not aware
any one claiming to know for sure whether the brain dyna
ics is chaotic, stochastic, or regular but complicated. Th
are experimental data@4# indicating that the brain dynamic
maybe chaotic. The question is, what is the role and ori
of chaos if the brain does use chaos in what it does@4–7#?
There is no definite answer to this question; only a numbe
hypotheses are available. Furthermore, most of these hyp
eses lack support from experiments or model calculation

The tasks of the brain include information processing a
control. Some information processing or computing fun
tions are now modeled by artificial neural networks~ANN!,
and almost none of the widely used ANNs require dynam
chaos as anessentialelement in their performance. Hence,
is worthwhile to study possible connections between ch
and control.

Among other activities, the brain and nervous system
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solve problems of posture control and keeping the chem
balance of the body. We think that some essential feature
such control mechanisms may be studied with models
stabilizing unstable mechanical or chemical equilibria. Su
problems are typical of the theory of optimal control@8#. If
the equation of motion and available control actions
known, this problem can be solved with the help of stand
analytical or numerical methods@8,9#. However, such meth-
ods may not be used by the nervous system. Instead of s
ing equations, it perhaps learns from trial and error us
certain types of experience such as pain or pleasure. In
chine learning, such an approach is called ‘‘reinforcem
learning’’ ~RL! @2,1#. So we have studied model problem
regarding chaotic stabilization of unstable equilibria with t
help of neural networks that utilize RL techniques. Exce
for reminding that chaos can yield, under suitable conditio
desirable results, we will not delve any further into the su
ject of brain dynamics.

The paper is organized as follows. In Sec. II, we gi
details of the discrete control that we have used in this wo
A discrete control implies that the control is chosen and
plied at discrete moments of time, and it depends only on
current state of the controlled system. We prove that suc
control of an unstable equilibrium can generate chaos.
simple problems, where the unstable manifold of a fix
point is one dimensional, such a control is obvious. For m
complex problems, examples of which are presented in S
III, special methods of learning are necessary. The ba
ideas of reinforcement learning are described in Sec.
Section V describes the neural network that we have us
numerical results that confirm chaotic behaviors in the res
ing dynamics, and some problems related with application
RL. Section VI contains an illustration of how the chaos in
controlled object can generate complex temporal activity
the controlling neural network.

In short, our studies show that there are at least two p
sible relationships between control and chaos. Chaos ma
a natural result of control. Also chaos may be used a
source of randomlike trials during learning. Earlier, the
were attempts to utilize chaos instead of random signal
supervised learning of neural networks. Methods of re
forcement learning, which sometimes require special exp
ration techniques, seem better suited for utilizing chaos. P
©2001 The American Physical Society15-1
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FIG. 1. Mapping resulting from discrete con
trol of unstable fixed point in Eq.~1!. ~a! map-
ping ~2! and an example trajectory; herêf &
50; ~b! increase in gradations of controllin
force diminishes the attractor size, three regio
correspond tof 51 f 0, 0 and 2 f 0; ~c! depen-
dence of the size of the attractor ont for the
mapping in panel~a!; ~d! nonsymmetric mapping
with unequal forces, which is used below in on
of the versions of cart-pole control. Asymmetr
makes^ f &Þ0, which helps to control the car
position.
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haps the brain also generates/utilizes chaos in a sim
manner, but there is no evidence in favor or against suc
thought.

II. DISCRETE CONTROL CREATES CHAOS

Let us consider a dynamical systemẋ5F(x), xPRn with
an unstable fixed pointx0 @F(x0)50#. We want to stabilize
it by adding a control termf. The resulting system takes th
form

ẋ5F~x!1 f .

The task of the controller is to choosef so that the trajectory
remains in the vicinity ofx0.

The resulting behavior of the system depends on the
tual scheme of control:f may take any value betweenf min
and f max, or it can have values only from a discrete set; t
controller may choosef continuously or only at some dis
crete moments of time. In typical problems of optimal co
trol of technological systems@8#, the control is usually con-
tinuous both inf and time. However, the so-called ‘‘bang
bang control,’’ with only extremal values off, often proves
optimal; one needs to find the switching curves or surface
phase space, where the value off should change. For the
brain, it is perhaps more appropriate to choose the disc
scheme. First, all signals are transmitted by discrete pul
Second, during certain periods, the neurons are in such s
that they are unable to process incoming signals.

In this paper we shall consider the case of discrete con
with the following characteristics: the controlling actionf
can take only discrete values, usually from a finite set;
specific value off is chosen by the controller at discre
moments of timetk5kt, and after it has been chosen,
04621
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remains constant until the next decision is taken; the cho
of action depends only on the state of the controlled sys
x(tk) at the momenttk .

From this definition, it follows that the controller shoul
split the phase space into domains according to the cho
value of f. Within each domain,f is constant. Therefore, al
most everywhere] f /]x50.

Discrete control of continuous-time dynamical syste
has been used in several problems of machine learning,
e.g. @3,10#. We shall show that it may result in chaotic b
havior of the controlled system, even if the latter is linea

Let us consider the simplest unstable system

ẋ5lx1 f , l.0, ~1!

where f is the controlling ‘‘force.’’ Let us assume that, a
some moment, the valuef 5 f „x(tk)… has been chosen. The
f remains constant untiltk115tk1t, and on this interval, Eq.
~1! can be solved analytically to obtain the expression
x(tk11). It is convenient to consider the mappingx(tk)
→x(tk11). Let us denotexk5x(tk), then xk115eltxk
1(elt21) f /l.

The properties of this mapping depend on the choice of.
In the simplest case of binary controlf 56 f 0 @3,10#, the
control should return a trajectory back to the fixed pointf
52 f 0sgn(x). This gives the following one-dimensiona
mapping:

xk115g~xk!, g~x!5H eltx2A, x>0

eltx1A, x,0,
A5

~elt21! f 0

l
.

~2!

The plot ofg(x) is shown in Fig. 1~a!. The mapping~2! has
two unstable fixed points6xu ,
5-2
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xu5
f 0

l
.

For initial data withuxu.xu , iterations ofx diverge. But for
uxu,xu , the trajectory always remains within the domai
2xu,x,xu , provided

A,xu , elt,2. ~3!

In fact, the trajectory stays within the interval2A<x<A.
Sinceg8(x)5elt.1 almost everywhere within this interva
there should be a chaotic attractor. Its dimension is 1 and
Lyapunov exponent is equal tol. Therefore, the discrete
‘‘bang-bang’’ control adds a necessarydelayed feedback,
which creates chaos in a single differential equation.

The relations in Eq.~3! show that the control intervalt
cannot be too large,

t,l21 ln 2.

The smaller ist, the closer is the trajectory to the pointx
50 ~in the limit t→0 we haveA't f 0→0—this is the situ-
ation of optimal continuous bang-bang control!. At t5tmax
5l21 ln 2, the value ofA becomes equal toxu , attractor
‘‘collides’’ with unstable fixed point and disappears via c
sis @Fig. 1~c!#.

It is interesting that, for too larget, the trajectories can
escape from the attractor only near the pointx50. There-
fore, to allow largert, one can change the mapping in th
vicinity of the origin by introducing the third control valu
f 50. For smallert values, the attractor shrinks closer to t
desired statex50 @Fig. 1~b!#. Therefore, the efficiency o
control increases with the number of available grades of.
Note that an increase in gradation does not change the v
of the Lyapunov exponent, it isalwaysequal tol.

An equally simple problem is that of stabilizing a pend
lum in its highest point. The equation of motion in the vici
ity of the equilibrium point has the form

ẍ5v2x1 f . ~4!

It is convenient to transform the second-order ordin
differential equations~ODE! to a system of two equations o
the first order: lety5v21ẋ, then ẋ5vy, ẏ5vx1 f /v.
Now, if we use the change of variablesu5x1y, v5x2y,
then these equations take the form

u̇5vu1 f /v, ~5!

v̇52vv2 f /v. ~6!

The first equation describes motion along the unstable m
fold of the saddle, while the second equation describe
along the stable manifold. As any special control of the s
ond equation is unnecessary, the problem of inverse pe
lum stabilization is reduced to Eq.~1!, but the controlling
force should depend on the sign~and maybe the value! of
vx1 ẋ. The discrete control described above brings up
chaotic attractor with Lyapunov exponents$v,2v%.
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We can generalize these examples as stated in the fol
ing theorem.

Theorem 1.Let a linear dynamical system with the dis

crete controlf be described by equationẋ5Ax1 f . Suppose
the origin (x50) is an unstable equilibrium with the set o
Lyapunov exponentsl1 , . . . , ln when there is no contro
( f 50). If the control keeps the trajectories within a bound
domain, then the dynamics in this domain will be chao
with a set of Lyapunov exponents identical to that of t
equilibrium point without the control.

The proof is obvious. According to the definition of
discrete control~see above!, we have] f /]x50 almost ev-
erywhere. This means that the Lyapunov exponents of

controlled system will be defined by the linear systemu̇
5Au. But this is just the original system without control an
so the set of Lyapunov exponents is the same.

Similar arguments apply to linear mappings~systems with
discrete time! with discrete controls.

We now consider nonlinear system with unstable equi
rium points. If the controlled trajectories of a nonlinear sy
tem stay sufficiently close to an equilibrium point, we have
case similar to a linear system discussed above. Howe
the Lyapunov exponents of the controlled and uncontrol
systems will generally be different. Only a weaker statem
can be proved.

Theorem 2a.Let a nonlinear dynamical system with th
discrete controlf be described byxk115F(xk)1 f , whereF
has the continuous derivativeDF(x). Let the origin (x50)
be an asymptotically unstable equilibrium with the set
Lyapunov exponentsl1 , . . . , ln , l1.0 when there is no
control (f 50). If the trajectories under control remai
within a small enough ball centered at the origin, then
dynamics in it is chaotic with at least one positive Lyapun
exponent.

Let us denoteB5DF(0), then l1 , . . . , ln are the
Lyapunov exponents of the linear systemuk115Buk . If
uxu,d, the continuity condition impliesuDF(x)2DF(0)u
,e for somed and e. Therefore, we can writeDF(x)5B
1eC(x) with some continuous and boundedC(x) that van-
ishes atx50. By choosingd small enough, it is possible to
havee as small as necessary. Now, the Lyapunov expone
of the controlled nonlinear system should be obtained fr
the linear systemvk115(B1eCk)vk . It is clear that, for
small enoughe, there should be exponentially growing s
lution and there should be at least one positivel, as in the
case withe50. The proof of this statement is given in Ap
pendix B.

If we considerẋ5F(x)1 f as a system with continuou

time, its Lyapunov exponents should be determined fromu̇
5DF(x)u. As in the previous case, it is possible to wri
DF(x)5A1eG(x), where A5DF(0). Now, we can go
from a differential equation to its ‘‘stroboscopic map
xk115x(tk1t)5Bkx(tk). Again due to continuityBk5B
1eCk , B5 exp(tA). This is a problem we have already co
sidered; the only difference is thatl i should be replaced by
tl i . This proves the following theorem.
5-3
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Theorem 2b.Let there be a nonlinear dynamical syste
described byẋ5F(x)1 f , whereF has continuous derivative
DF(x) andf is the discrete control. Let the origin (x50) be
an asymptotically unstable equilibrium with the set
Lyapunov exponentsl1 , . . . ln , l1.0 when there is no
control (f 50). If the trajectories under control rema
within a small enough ball centered at the origin, the dyna
ics in this domain is chaotic with at least one positi
Lyapunov exponent.

The above theorems characterize the dynamics under
trol, but they do not show how to organize such a cont
From the examples above we can see that discrete co
does not convert an unstable fixed point into a stable o
Instead, itshifts its position. Then, movingaway from the
new unstable point~in the example abovex56xu) may cor-
respond to movingtowards the original equilibrium (x
50). Such shifts should be made along the unstable
possibly central manifold of the original equilibrium. Ther
fore, the complexity of the stabilization problem depends
the dimensionsdu anddc of these manifolds.

If dc1du51, as in the examples above, then the con
strategy is obvious. But if the new position of the unsta
point has to ‘‘dance’’ in a higher-dimensional space, th
intuition rarely can give ready recipe for the control. Let
consider two examples wheredc1du52 and 3.

III. EXAMPLES OF MORE DIFFICULT CONTROL TASKS

Note that the tasks considered in this section are diffic
not from the viewpoint of the modern control theory@8#,
which we do not use here. The difficulty lies in the fact th
there is noobviouscontrol strategy for them. We want to se
how these tasks can be carried out by neural networks
reinforcement learning@11,3,12,1,2#. As sample cases, w
have chosen one mechanical and one chemical system.

The mechanical problem is the so-called cart-pole bala
ing problem@3,2#, Fig. 2 ~sometimes called broomstick ba
ancing@13#!. There is a cart, which can move along the li
from 2xmax to xmax. A pole is attached to the cart with on
end such that it can rotate in the vertical plane parallel to
line of motion of the cart. Therefore, if the pole is set almo
vertical, while falling, it moves the cart. If one pushes t
cart, the push affects the pole dynamics as well. That is
moving the cart, one can change the position of the pole.
state of the cart-pole system is determined byx ~coordinate
of the cart!, ẋ ~velocity of the cart!, u ~inclination angle of
the pole from the vertical!, andu̇ ~angular speed of the pole!.

The control task is as follows: After every time intervalt,
the controller receives the values of the cart-pole state v
ablesx, ẋ, u, u̇. The controller can apply a force equal to6 f
to the cart, which acts during the nextt interval. The task is
to keep the angleu within the limits @2umax,umax#, and the
position of the cartx within @2xmax,xmax#. If either u or x
falls out of their limits the controller receives a failure sign
and then the cart is returned to the positionx50, and the
pole is set at some small angleu0.

The parameters of the system were taken from@3#. They,
along with the equations of motion~A7!, are presented in
04621
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Appendix A. But the basic control mechanism and the m
difficulty can be understood from the linearized equatio
near the fixed point (x5 ẋ5u5 u̇50),

ẍ1
2l

3
ü5gu, ~7!

ẍ1
mpl

2~mc1mp!
ü5

f

mc1mp
, ~8!

with the initial conditionsx(0)5 ẋ(0)5 u̇(0)50, u(0)5u0
Þ0. Heremc is the mass of the cart,mp and l are mass and
length of the pole,g is the acceleration due to gravity, an
friction terms are neglected. For the parameters used,mc

510mp51, l 50.5, g59.8 andu f u510, so the factor atü in
the second equation is very small~1/44!, and we get almost
‘‘two-stage’’ control: the forcef accelerates the cart, whil
cart’s acceleration works as a control force for the inver
pendulum.

It may seem that this problem is equivalent to the cont
of an inverted pendulum~Sec. II!. One can excludeẍ from
Eq. ~7!, and the equation foru coincides with Eq.~4!, ü
5v2u1f, wherev andf can be found from Eqs.~7! and
~8!. But experiments show that the simplest strategy, whef

depends only on the sign ofvu1 u̇, works only whenu0 is
so small that it falls within the resulting chaotic attracto
uu0u<u0max'2.9°. Exact comparison ofu0max with A for the
problem ~1! is hard, since the variablex in Eq. ~1! corre-
sponds tou1v21u̇ rather thanu. For u0.u0max, while u
converges to the chaotic attractor, the cart acquires sp
This initial speed is not related with the current values ou

FIG. 2. The cart-pole balancing task. Controller should cho
the proper direction forf after each time intervalt such that the
angleu for the pole will remain within@2umax,umax#, and the cart
never hits the ends of the track,2xmax,x,xmax. In the beginning,
the cart is positioned at the middle of the trackx50 and the pole is
set at some angleu0 that is within the admissible limits. In numeri
cal calculationsumax512°, xmax52.4, and in most presented ex
amplesu0528° was used. The main conclusions, naturally, do n
depend onu0, though foruu0u less than about 2.9° the control tas
becomes too easy — just the simple control strategy for an inve
pendulum solves the problem.
5-4
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CHAOTIC NEURAL CONTROL PHYSICAL REVIEW E63 046215
or u̇, and hence cannot be compensated by a ‘‘pendulu
control. As a result, after some time, depending onu0, the
cart hits the end of the track.

It is easy to show that the linear problem described
Eqs. ~7! and ~8! has the eigenvalues$v,0,0,2v%. The two
zero eigenvalues correspond to a translation degree of
dom. Therefore, the control should be organized in th
dimensional subspace, and it is hard to organize it intuitive
Comparison with inverted pendulum shows the role of
center manifold.

The second control problem is related with chemical
actions. We have chosen the well-known system with os
latory behavior, the Brusselator@14#. In specially chosen
variables it has the form

ẋ5c2~b11!x1x2y,

ẏ5bx2x2y.

Herex, y, c, b are the concentrations of reacting chemicals
is supposed thatc andb are kept constant, whilex andy can
vary with time. It is easy to check that this system has a fix
point x5c, y5b/c. If we fix c5c051 and varyb, then for
smallb,2 the fixed point is stable. Atb52 the Hopf bifur-
cation occurs and oscillatory behavior can be observed.
the numerical experiment, we have chosenb5b053. The
amplitude of the limit cycle for this choiceb5b0, is about 3
in both x and y. The task was the following: the controlle
receives the current values ofx and y. Then it can set the
values ofc5 f 1c0 andb5 f 2b0, where the factorsf 1 and f 2
can be equal to 0.8, 0.9, 1.0, 1.1, or 1.2. These valuesc
and b remain unchanged during the next controlling peri
of the lengtht. It is necessary to keep the values ofx andy
in the vicinity of the point (1,3). Atc51, b53 this point is
an unstable focus with the eigenvaluesl1,25(16A3i )/2,
therefore the unstable manifold is two dimensional. Ther
also no obvious way of control in this case.

To solve these model problems, we used the method
reinforcement learning. Note that the solutions for the ca
pole problem were published long ago, but we are interes
here in the analysis of the resulting dynamics.

IV. BASICS OF REINFORCEMENT LEARNING

In order to explain the learning algorithm, we have to s
a few words about reinforcement learning~RL!. Sometimes
it is called ‘‘learning with a critic.’’ The main task of RL is
to work out optimal sequence of control actions to achiev
goal based only on evaluative feedback, when there are
examples of successful control.

RL has been known for about 50 years, but rapidly
creasing interest in it arose in the late 1980s and 1990s, w
several approaches~theory of Markov decision processes
dynamical programming, eligibility traces, temporal diffe
ence learning! merged together forming the modern theo
of RL @2,1#. Currently, it is not as widely known as, fo
example, neural networks. Its theory is under active de
opment. Its recent applications include control of comp
mechanical systems, navigation of robots, elevator dispa
04621
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ing, playing backgammon, optimal chaos control and oth
@2,1,15,16#.

Now we discuss some basic concepts of RL. More det
about RL can be found, for example, in the excellent int
ductory book@2# and a number of papers, e.g.,@1#. The gen-
eral scheme of RL includes~i! anenvironmentwhich is char-
acterized by its states, ~for example, a system to b
controlled, such as the cart-pole! and ~ii ! an agent, ~control-
ler! who can perform actiona ~in the cart-pole example, the
action is application of selected forces!. For the sake of sim-
plicity, we shall assume that boths and a are discrete. The
agent receives information about the statest at time t, and
undertakes an actionat , which influences the environmen
After each action, the agent receives information about
next statest11 and a scalar signalr t called reward. The
reward may evaluate either the consequences of the las
tion or just the current state of the environment after a lo
sequence of actions. In the latter case the reward is dela
For example, while the cart and the pole are within the spe
fied limits, the reward is zero. Whenu or x goes out of its
limit, the reward is21. Another example is the game o
checkers or chess, where the reward is the outcome of
game. Negative rewards sometimes are called ‘‘punishme
or ‘‘penalty.’’ The rule, according to which the agen
chooses its actionp(s,a) is calledpolicy. Usually a policy is
the probability of taking the actiona. Deterministic choice
means that for only one of the actions the probability
nonzero.

The task of the agent is to work out anoptimal policythat
brings maximal total reward during a large or infinite numb
of actions. In the latter case the sum(k51

` r k may be infinite,
and the discounted total reward used is(k51

` gk21r k , 0,g
,1 ~usually ur ku is bounded!.

Interaction of the agent and the environment is usua
described in terms of the transition probabilitiesP
5P(a,s,s8) from the states to the states8 after the actiona,
and by the value of the rewardR5R(a,s,s8) after such tran-
sition. The value ofr k in numerical experiments is alway
equal to a value ofR. If all P and R are known, then the
optimal policy can be found by the methods ofdynamic pro-
gramming~DP! @17,8,2# @sometimes the termMarkov deci-
sion process~MDP! is used#. Within this approach, it is con-
venient to define thevalue Vp(s) of each states as the
expected total discounted reward, if the agent starts to
from this state and follows the policyp. Similarly, one can
define the valueQp(s,a) of each actiona at the states. The
set of V or Q is a solution of a certain linear system o
equations. Values ofV and Q are closely related: if one
knows allV, P andR, it is easy to calculate allQ and vice
versa.

To obtain an optimal policy, the method ofpolicy itera-
tion is used. If the agent chooses an action with the larg
Qp @instead of the current policyp(s,a)], then for this new
policy p1 all Vp1>Vp and Qp1>Qp. This new policy in
turn can be improved and so on. It has been proven that
process converges to an optimal policy with action valu
Q* (s,a). On the other hand, if one knows allQ* (s,a), then
the policy itself can be easily found: every time one mu
5-5
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choose the action with the largestQ* . One of the RL algo-
rithms, described below—theQ learning—estimates the va
uesQ* almost independently of the current policyp.

It should be noted that rigorous results correspond onl
the case where the states is Markovian, that is, all the tran
sitional probabilities depend only ons anda, but not on the
previous history. This allows one to write a system of eq
tions for V or Q, which simply relate their estimates at tw
sequential time steps,

Vp~s!5(
a

p~s,a!(
s8

P~a,s,s8!@R~a,s,s8!1gVp~s8!#.

~9!

Sometimes, in practice, methods based on MDP appro
prove very efficient even in cases where states are n
Markovian.

The situation becomes more complicated when the tra
tion probabilities are unknown, and the agent has to work
the best policy onlyfrom its own experienceobtained from
previous actions and rewards. Modern algorithms of RL c
find such a policy in an efficient way. They use the conce
of values of states and actions from dynamical programm
along with some ideas from learning theories. There are
main classes of methods@2,1#: Monte Carlo, whereV andQ
are estimated as averaged reward received after corresp
ing state and action~it requires many repetitions!, and tem-
poral differences~TD!, where the estimates of these valu
are received by iterations.

According to@2,1#, TD methods are more popular. The
are based upon the following simple recursive relati
When we are trying to estimateV experimentally, the esti-
mates for different states are related asV(st)
5(k50

` gkr k1t115r t111gV(st11), and thereforeD t5r t11

1gV(st11)2V(st)50. Note that for theexact V values,
satisfying Eq.~9!, only ^D t&50, where averaging is taken b
all possible actionsat and all possible statesst11 after them.
Nonetheless, it has been found@2,1# that the current values
of D t , instead of the average values, can be efficiently u
for V updates,

V̂~st!5V~st!1a tD t . ~10!

Initial values forV may be arbitrary, e.g.,V50.
Similar updating scheme exists@2# for the action values,

Q̂~st ,at!5Q~st ,at!1a@r t111gQ~st11 ,at11!2Q~st ,at!#.
~11!

It has been called the ‘‘sarsa’’ scheme because of the st
st ,at ,r t11 ,st11 ,at11. The sarsa scheme providesQ esti-
mates for the current policy, but it can be easily combin
with policy improvement: decision regarding which action
to be taken, can be made from the latestQ values. Another
well-known approach is ‘‘Q learning.’’ The relation for it is

Q̂~st ,at!5Q~st ,at!

1a@r t111gmax
a

Q~st11 ,a!2Q~st ,at!#. ~12!
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The resulting estimates ofQ correspond to an optimal policy
and there is no need for policy improvement~though, the
current policy should make it possible to evaluateQ for all
essential states and actions!.

For the choice ofa, usually there is no strong theoretic
restriction. Proof of convergence for these methods@2,1# re-
quires thata t should slowly decrease with time so th
( ta t5`, ( ta t

2,` ~for example,a t5a0 /t). Sometimes,
the methods work well for nondecreasinga t , which may
even not be very small~for some problems evena51 is the
best choice@1#!.

The rate of convergence of RL methods~both TD and
Monte Carlo! does not follow from the theory. Such resul
are empirical and based upon a large number of comp
experiments. For any given system, the methods may beh
differently. However, for working out a good policy, on
may not need apreciseestimate ofQ, in fact, one needs only
to know whichQ is the largest. Experiments show@2,1# that
TD methods usually provide such information faster.

Efficient implementation of these methods include tw
more ideas: eligibility traces, which come from learnin
theories@18#, and exploration/exploitation tradeoff, which
a common problem in stochastic control.

The idea of eligibility traces was developed originally f
model neurons to reproduce effects similar to conditio
reflexes@18#. These reflexes relate two events, ‘‘neutral’’ an
‘‘essential,’’ that are separated by a time interval. The id
was that neurons and connections responsible for proces
neutral events, for some time after them remain eligible
changes. Essential events can cause these changes. As
sult, after several repetitions, a neutral event may cause
same effect as an essential one. The corresponding m
ematical model of neurons, besides the usual connec
weights between neuronswi jt , includes valuesei jt , called
eligibility traces. The updating rule for the weight takes th
form Dwi jt ;ei jt r t , wherer t is a signal generated by ‘‘es
sential’’ event. Initially, allei j 050. When a connection be
comes eligible for changes, the correspondinge is set to 1~or
increased by 1!. Then it exponentially decayset115let , l
,1. Therefore, for some time after resettinge, the corre-
sponding connection can change, but later such a possib
vanishes until new resetting.

In the reinforcement learning, this idea has been imp
mented as an attempt to solve the problem ofcredit assign-
ment. When the reward is a result of many actionsat ,
at21 . . . , onewould like to know, which of these actions i
responsible forr t11. How do we assign a correct credit t
eachat , so that we have the correct updating of value fun
tions and improving policy? In general, the answer to t
question may not exist, but for ergodic Markov chains t
effect of each action~or being in a specific state! decays
exponentially. Therefore, at least for some problems, ex
nentially decaying eligibility traces may partially solve th
problem of credit assignment. The corresponding class of
algorithms has been called TD(l), wherel stands for the
decay rate of the eligibility traces. For each state~or state-
action pair! there is a variablee(s) @or e(s,a)]. It is set to 1
every time the environment is in the states ~and an actiona
is chosen!. Then e(s) exponentially decays to 0 unless th
5-6
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CHAOTIC NEURAL CONTROL PHYSICAL REVIEW E63 046215
state returns tos. This helps updating simultaneously manyV

or Q values, which are relevant to the latest actions:V̂(s)

5V(s)1a te(s)D t , or Q̂(s,a)5Q(s,a)1a te(s,a)D t . Ac-
cording to@2,1#, eligibility traces may significantly acceler
ate RL especially in the case of delayed reward in wh
nonzeror appears after many actions.

The task considered may beepisodic, that is, some of the
statessi are terminal. When the system falls into a termina
state, the process stops. For subsequent learning, anothe
sode should begin. Note that the cart-pole balancing prob
has been formulated as an episodic task. When the co
tions forx or u are violated, the system is considered to be
a failure state, after which it is reset. For episodic tas
when a new episode begins, the eligibility traces also sho
be set to zero.

Another problem is related with the following contradi
tion: to increase performance it is necessary to follow
best policy, that is, to select actions with the largestQ esti-
mate ~such policy is calledgreedy!. But to get correctQ
estimates, it is necessary to try all or a large number
actions, most of which are inefficient. The learning syste
must explorepossible actions. This exploration is achiev
usually by two methods:~i! Set high initial values for all
states/actions. This encourages the learning system to tr
states and actions, but only during some initial time interv
~ii ! Follow nondeterministic policy, choosing nonoptimal a
tions with small probabilitye (e-greedy policy!. Also, ex-
ploration is necessary when the environment is nonstat
ary. Then the optimal policy may change with time, and
learning agent should be able to find the new one.

All these methods can be generalized for the case of c
tinuous states and continuous actions@2,1#. This substantially
increases capabilities of the methods, but at the same
creates new problems withQ(s,a) or V(s) approximation.
For continuous actions, there is also the problem with
choice of the best action. In this paper we wanted to st
some details of application of RL to dynamical systems a
limited ourselves to the simplest implementations of RL.

It is important to note that, despite the relative simplic
of general idea, any specific implementation of RL may
quire a thorough accounting of the details. For example, p
formance of the methods sometimes depends on the pr
choice of the parametersa, g, l, e ~examples are shown
below!. Also, if the system is non-Markovian~as it is often
the case in practice!, then there is no proof of convergence
the above technique. It is known that in such cases the re
of Q learning may oscillate between several policies@1# ~ex-
amples will be shown!. Another possible source of oscilla
tions is pointed out in@19#: convergence in the ‘‘policy
space’’ may be rather complex and may resemble a st
focus. Convergence is accompanied by wandering betw
various ‘‘neighboring’’ policies.

We should also note that the described approach of v
functions is the most general, but not the only one in
theory of RL. For other approaches see, e.g.,@1,11,12,20,15#
and references therein.
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V. NEURAL CONTROLLING ARCHITECTURE AND
NUMERICAL RESULTS

A. The problem of phase space partitioning

To apply adiscreteversion of RL to the problem of con
trol of a dynamical system withcontinuouslychanging state,
it is necessary to make a partitioning of its phase spaceV
5øAi , AiùAj5B. In @2#, it is called ‘‘tile coding.’’ Each
domainAi of this partition corresponds to one ‘‘state’’si ,
which determines a controlling action. Then with the help
RL, it is necessary to find the best policy.

From the view point of the theory of Markov decisio
process, the main requirement is that this partitioning sho
be Markov. That is, the probability with which a trajecto
jumps from partitionAi to Aj must not depend on its previ
ous history. Such Markov partitions are used, e.g., in ergo
theory of dynamical systems@21#. But usually it is very hard
to build such a partition and to prove whether it is Markov
not. It is known that the methods of RL may work for no
Markov partitions very well. On the other hand, non-Mark
partitioning may be a cause for their poor performance.

The main problem with partitioning is that it should allo
a good control policy. If it does, then most probably RL w
find this policy. If it does not, nothing can help. The proble
of partitioning seems to be one of the hardest, and it requ
a good intuition, experience, anda priori information about
the problem@1# ~for example, in the problem of stabilizing
fixed point most important is the partitioning of the unstab
and center manifolds!. If the partitioning has to be very fine
then it may be better to use a different kind of coding. F
example, one can use a continuous approximations of de
dence^point of phase space&→^control action& @1,2# with
the help of a neural network. But our model problems allo
to work with rather coarse partitions, so we used the simp
approach. In@3,10# the partition of the cart-pole phase spa
has been done with the help of so-called ‘‘boxes’’ — re
angular cells of different sizes. But, as our experime
show, self-organizing neural network provides better pa
tioning.

One of the efficient mechanisms of partitioning is the u
of vector quantizing~VQ! networks or self-organizing map
~SOM! @22–24#. These networks have a set of reference v
tors vk ~input connections!, and they split the whole spac
into so-called Voronoi or Dirichlet cells: thei th cell consists
of the pointsx, for which the vectorvi is the nearest of allvk
(xPAi if argminkux2vku5 i ). Such partition will depend on
the number and location of the vectorsvk , and on the metric
used for calculation of distances.

So, if xPAi , then the VQ network activates thei th neu-
ron. We associate with it the values ofQ(si ,a), correspond-
ing to the statesi and operations, related with the RL and th
choice of control action~so this should be an ‘‘intellectua
neuron,’’ which may represent a neurons ensemble or a s
rate network!. This neuron receives current reinforceme
signal, calculates the value ofD t , updatesQ, chooses the
next control action, and sends this information to other n
rons and the correspondingf to the controlled system~Fig.
3!.
5-7
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FIG. 3. Scheme of the simplest neural co
troller with reinforcement learning. Information
about current statex of dynamical system goes to
vector quantizing network, which determine
which domainAi it belongs to. Then the corre
sponding neuron is activated: it calculates the u
dating termD ~11! or ~12!, updatesQ(si ,ak) if
e(si)Þ0, and chooses the next actiona* from
the set of possible$ak%. Then it sends the value
of D ~for current update! andQ(si ,a* ) ~for cal-
culating D next time! to other neurons, and the
necessary controlf (a* ) to the dynamical system
The rewardr is estimated from the current statex
by a separate subsystem, e.g., a set of special
sors, then it goes to neurons forD calculating.
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One of the advantages of SOM networks is the ability
adjust the partitioning to the available set of ‘‘experimenta
data points, or even reproduce their distribution dens
Among numerous applications of such networks@22#, there
are applications in control, e.g., robot movements@22,15#.
But standard algorithms of SOM learning are not good
our problem. For this reason we applied another type of
network, which can be called ‘‘self-developing network.’’
is based upon the idea of network growth~see, e.g.,@25#!.
The algorithm was very simple: we placed a new neuron
the current trajectory point when the nearest neuron t
proved farther than some threshold distanced0. The values
of Q for this new neuron are copied from its closest neig
bor. Performance of this technique depends on the valu
d0, and on the choice of the metric in phase space. As
experience shows, it is not hard to find appropriate values
trial and error method. At the initial stages of learning, th
approach leads to variable number of the states, but b
sarsa andQ-learning methods can be easily adopted to it

B. Cart-pole control

In the work @3#, the ‘‘boxes’’ partitioning of phase spac
was taken from another paper on machine learning@10#. The
allowed limits on x and u were uxu,xmax52.4 and uuu
,umax512°, respectively. The partition was organized a
number of rectangular cells, formed by hyperplanes loca
at x560.8, 62.4, u50°, 61°, 66°, 612°, ẋ560.5,
6`, u̇5650, 6`. This gives a partition of 3363333
5162 cells. The control technique was the simplest ‘‘ban
bang’’ — application of the forcef equal to either1 f max or
2 f max to the cart, wheref max510. As it was shown in@3#,
the RL methods were able to find a good policy, and the p
was kept upright for a long time.
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We repeated their results, and studied the problem
more detail, because we wanted to explore both the cha
teristics of the regime arising under control and the capab
ties of the RL techniques. We used theQ learning~12! and
sarsa~11!, which did not exist when the work@3# was pub-
lished.

As it can be expected, the control occurred in a chao
regime. The estimated values of Lyapunov exponents@21#
were very close to the eigenvalues of the linearized syst
~7! and ~8! $v,0,0,2v%, v>5.62. The typical set of
Lyapunov exponents obtained numerically for the origin
nonlinear model~see Appendix A! was$5.63,0,0,25.63% in
good agreement with the linear analysis. They slightly var
for different control schemes, but the difference with t
analytical estimates never exceeded 0.1.

From the linearized equations~7! and~8!, one can get the

equation for the pole alone,ü5v2u1f, ufu529.3. The re-
sults of Sec. II give the estimate for the upper limit of th
control interval astmax5v21 ln 2>0.12. But RL methods
could not find a good policy fort close totmax, because the
cart rather quickly hit the end of the track. It proves that t
control interval (t50.02) used in@3# is close to the practica
upper limit for this control scheme. We also used thist
value.

To check the performance of RL algorithms, we want
to find a coarser partition. With it, all possible policies can
tested to find the best one. Then the results of RL meth
can be compared with this best policy. Note that the partit
from @3# gives 2162–1050 different policies. Hence, it is prac
tically impossible to check whether a better one exists or n
As our results show, the partition indeed may be coarser,
the problem should be slightly nonsymmetric.
5-8
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FIG. 4. The problem of cart-pole control, 12
cell boxes partition of phase space. Examples
Q-learning performance for different parameter
Shown is the balancing time for learned gree
policy after each episode. Testing of the balan
time stopped aftert56000, and this value corre
sponds to the best policy. Dots show the durati
of the corresponding episode. For all exampl
the initial position of the pole was the sameu0

528°. ~a! a50.1, b50.01, g5l50.5, e
50.1 (e-greedy policy!; ~b! same as panel a, bu
e50 ~purely deterministic policy, exploration is
due to system’s chaoticity!; ~c! a50.1, b
50.01,g50.95,l50.5, e50.1; ~d! same as~c!,
but e50. Therefore, policy randomness ma
both improve and spoil the performance. Optim
values of parameters do not follow from theor
but can be found in numerical experiments.
rt

ar
an
se
g
a

s
tro
e

e
c

s

e

m
th

r a
ne
s

ng,

a

the

ach

n

all

ys-

y

-
n
e
hey
that
en

ay
1. Coarse boxes partition

As we mentioned in Sec. III, the problem with the ca
position control arises because, for large initial anglesu(0),
the cart acquires some speed during the convergence ofu to
the attractor. With a large number of partition cells the c
sometimes gets more pushes to the right or to the left
this helps compensate for initial and all subsequent impul
But similar effect can be easily obtained if the controllin
forces acting to the left and right are made unequal, s
2 f max and 10.9f max, the partition of unstable manifold i
chosen to be unsymmetrical. This way it is easier to con
the motion of the cart. It is necessary only to switch betwe
the ‘‘left’’ and ‘‘right’’ modes at proper times. This can b
done by partitioning the center manifold: the important fa
tors are the signs ofx andẋ ~where the cart is and where it i
moving to!.

The unstable manifold corresponds to the variableu

5vu1 u̇, and for unsymmetrical partitioning we set th
threshold values ofu equal to 610, 6`. For the center
manifold, we used only zero threshold for bothx andẋ. This
gives only 33232512 cells and 21254096 control poli-
cies. It is easy to find an optimal policy just by trying the
all without any learning. Thus, we can check how good is
solution obtained with the help of RL.

The ‘‘balancing times’’tB , for most deterministicpoli-
cies, depend on the initial angleu(0), but qualitatively, the
distributions oftB are similar. Foru(0)528°, for example,
4030 policies have 0.08<tB<5.02 ~more than half give the
worst result!. The three best results are: one policy withtB
525.60, 64 policies withtB5133.58, and the optimal policy
with tB.106 ~most probably, it is infinite!. For u(0)5
23°, three best results were 29.62~1 policy!, 139.58~64
policies!, and also one optimal policy with most likelytB
5`. For positiveu(0), when large negativeu values are not
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needed, one more policy becomes optimal. Therefore, fo
random choice of policy, the probability to find a good o
with tB.100 is 2%, and that for the optimal policy is les
than 0.05%. To show the importance of symmetry breaki
we made similar tests for symmetric control withf 5
6 f max, and the besttB was about 23.

When applying RL methods to this problem, we tested
number of different values ofa, g, e, andl, and the two
methods,Q learning and sarsa. In both methods, we used
e-greedy policy based on the latestQ estimates.

The problem naturally splits into episodes, the end of e
episode being the fall ofx or u outside their limits~terminal
state in terms of RL!. While the cart and the pole remai
within specified limits, the controller receives the rewardr
50, and at the terminal state the rewardr 521. Therefore,
nonzero reward comes only rarely, but learning goes on
the time: TD methods change the values ofQ such that they
become consistent with the trajectory of the dynamical s
tem. The value ofa t slowly diminished with time asa t

5a0 /(11bt learn) , where t learn is the total learning time,
including the duration of all previous episodes.

The quality of the currentQ estimates~and hence the
current greedy policy! has been verified experimentally b
evaluating the correspondingtB value. We estimatedtB at
the end of each episode~this time is not included int learn),
when x or u goes out of their limits and the controller re
ceives nonzero rewardr 521. The process of learning the
can be shown as a sequence oftB values. Sometimes, thes
tB values stabilized at certain number, and sometimes t
oscillated. The examples are shown in Figs. 4–6. Note
usually tB does not coincide with the episode duration ev
if the policy is deterministic (e50). During the episode the
values ofQ are updated, and the current greedy policy m
change.
5-9
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FIG. 5. The problem of cart-pole control, 12
cell boxes partition of phase space. These e
amples show that sometimes performance ofQ
learning may be poor, probably, because of no
Markovian partitioning of phase space. It
known that for partially observed Markov proces
Q learning may oscillate@1#. a5b50.01, g5l
50.5, u0528°, e50.1 ~a!, 0.01 ~b!, 0.001~c!,
0 ~d!.
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The total number of test runs was about 1000 for ev
method. The learning period was limited: we had the num
of episodes<500, the duration of each episode<6000~both
in learning and testing,tB56000 in the figures correspond
to the optimal policy!, and the total learning time<50 000.
To characterize the RL performance, we used the follow
values:~1! the besttB valueTmax found during learning:~2!
the average balancing timeTA for the period after a good
policy with tB.100 has also been found. Even though t
04621
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value depends on the limit of episode duration, it is instru
tive.

For Q learning, the best policy has been found at le
once (Tmax56000) in 43% of all runs with the average valu
of TA51230, in 51% of runsTmax5133, and only in 6% a
good policy has not been found at all. For sarsa, sim
result was 69% (TA5469), 29% and 2%.

To find out the role of the exploration, we compared on
the results fore50. They were 29% (TA51813), 67%, and
-
x-
FIG. 6. The problem of cart-pole control, 12
cell boxes partition of phase space. Several e
amples of the sarsa scheme performance,u05
28°. ~a! a50.1, b50.01, g50.5, l50.5, e
50.001; ~b! a50.01, b51.0, g50.95, l50.9,
e50.01; ~c! a50.1, b50, g50.5, l50.5, e
50.0001; ~d! a50.1, b50, g50.5, l50.5, e
50.
5-10
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CHAOTIC NEURAL CONTROL PHYSICAL REVIEW E63 046215
4% for Q learning and 62% (TA5531), 37%, and 1% for the
sarsa scheme. Therefore, exploration increases the chanc
find the optimal policy.

As it is noted in@1#, oscillations in Figs. 4–6 may be th
result of non-Markovian states. We tested the partition w
the help of the entropy estimates. For the optimal policy,
generated a long trajectory of 107 data points and evaluate
the probabilitiespi of the trajectory to fall into each of the
partition domainsAi , the pair probabilitiespi j (Ai→Aj ) and
triple probabilitiespi jk (Ai→Aj→Ak).

For a true Markov chain the following relations should
valid,

pi j 5pi Pi j , pi jk5pi Pi j Pjk5pi j Pjk, ~13!

wherePi j are the transition probabilities. Since the trajecto
is long, most likely the probabilitiespi are close to their
limiting values, sopj5( i pi Pi j .

First, it is possible to check the conditions~13!. From
these conditions it follows that, for Markov chain, the ide
tity D i jk5pi jkpj /pi j pjk51 should hold. To characterize th
deviation from 1, we calculated the mean val
^max$Dijk ,Dijk

21%& for all pi jk.0.01, and it was equal to 1.
instead of 1.

Another characteristic may be the entropy. For the cas
Markov chain and limitingpi , the following must hold,

H152(
i

pi ln pi ,

H252(
i j

pi j ln pi j 52(
i

pi S (
j

Pi j D ln pi

2(
i j

pi Pi j ln Pi j 5H11dH,

H352(
i jk

pi jk ln pi jk52(
i

pi S (
jk

Pi j PjkD ln pi

2(
i j

pi Pi j S (
k

PjkD ln Pi j 2(
jk

S (
i

pi Pi j D Pjk ln Pjk

5H112dH,

so H32H25H22H1 , H122H21H350. Our estimates
gave H1>1.68, H2>2.61, H3>3.08, so DH5H122H2
1H3520.46, so the deviation from a Markov chain is o
vious. This may explain the oscillatory behavior inQ learn-
ing @1#.

2. Self-developing network

To make a self-developing network, we used a spe
metric in phase space for calculating the distancer from a
point x5$x,u,ẋ,u̇% to a vectorvk , corresponding to thekth
neuron: r(x,vk)

25((cixi2vik)2. The ranges for differen
components ofx differ too much, and without a proper me
ric it is necessary to use too many neurons for efficient c
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trol. The set of coefficientsci in the tests described below
was the following: c15c351/xmax, c251/umax, c4
51/(5.6umax).

The first neuron was placed at the target pointxtarg50,
that is v150. When the trajectory moved too far from a
existing neurons, a new neuron was added, and the in
values ofQ for it were copied from its nearest neighbo
Since, in this problem, we are interested in keeping the
jectory close to 0, we used additional factor to prevent fro
having too many new neurons far from the target point.
the final criterion for creating a new neuron was the follo
ing: Let the trajectory be at the pointx, andvk correspond to
the nearest of existingN neurons. Ifr(x,vk).r0ekr(x,xtarg),
then we create a new neuron withvN115x, which corre-
sponds to the statesN11, and setQ(sN11 ,a)5Q(sk ,a). In
numerical experiments, we usedk50.5, which proved to be
optimal.

Changes in the value ofr0 lead to a sort of phase trans
tion in the algorithm behavior. For smallr0 values the num-
ber of neurons did not stabilize until the upper limit forN has
been reached. The performance of RL algorithms in this s
ation was not good. For too larger0, the partition was too
coarse. There was an interval ofr0 values, in which the
performance of the methods was the best, see Fig. 7.

The growing network helped obtain even simpler pa
tioning, including only eight neurons~instead of 12 in boxes!
for symmetric control~that is, with the same values off in
both directions! with most probably infinitetB . Another in-
teresting effect was that, for self-developed partitions, u
ally the value ofDH was smaller than that for 12-cell boxe
Once we obtained a partition with 13 neurons for whi
DH520.02. But, when we set this partition manually an

FIG. 7. Dependence of the self-developing network efficiency
the cart-pole problem on the parameterr0. For eachr0 value 10
test runs have been done, learning was terminated after findi
policy with tB.1000 or after 500 episodes.~a! The number of
neurons in the network at the end of learning after the good con
policy has been found~black circles! or after 500 training episode
~empty circles!. ~b! The percentage of the runs where good cont
policy has been found.
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FIG. 8. Control of the Brusselator model. Here, in contrast with the cart-pole, there are more gradations of control impact:c andb can
take 5 values each~0.8, 0.9, 1.0, 1.1, 1.2 of their ‘‘main’’ valuesc051 andb053), that is there may be 25 different control actions. Dott
line shows the stable limiting cycle in the model, and the cross — the unstable focusx51, y53, in the vicinity of which trajectory should
be kept by the control. Black circles show the location of the VQ network neurons, which correspond to discrete statessi , used in the
control. Solid line shows the trajectory under deterministic control, learned by RL with self-developing VQ network. Two different k
problem were considered.~a, b! Like in the cart-pole problem, initial data were chosen in the vicinity of the focus, and when the traje
moved too far away from it, the controller received a failure signal, after which new episode started again from near the focus.
appear only near to the focus, and a few of them are enough. Panel~b! shows the controlled trajectory in larger scale.~c, d! Learning started
from the limiting cycle and was not splitted into episodes, and the reward signal was negative with the value proportional to the
from the focus. Here neurons cover the whole neighborhood of the cycle, and their number is much larger.
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tested the performance ofQ learning, the convergence wa
not very good. Therefore, even the closeness ofoptimalcon-
trolled behavior to Markov chain does not guarantee go
convergence ofQ learning. This may happen, for example,
the properties of transitional probabilitiesP(a,s,s8) are
policy dependent. It also proves that sarsa can find opti
policy faster than Q learning, but may also ‘‘lose’’ it mor
easily. The problem with convergence still remains.

In all cases, the learned control regime was chaotic w
the values of the largest Lyapunov exponent between 5
and 5.72.

C. Control of a periodical chemical reaction
causes hyperchaos

In this case, the unstable manifold is two-dimension
and it is also hard to propose any intuitive control strate
~though there exists a very simple control strategy that
been found by RL!. This problem proved to be simpler tha
the cart-pole one. We obtained good results with boxes,
domly distributed neurons, and self-developing network.
shall present results only for the self-developing netw
~Fig. 8!. An interesting feature of the Brusselator control
that the convergence of RL algorithms was essentially be
04621
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than that for the cart-pole. Also, there is no need to introd
any special metric for the use of a self-developing netwo

We considered two kinds of control problems. The fi
one, as in the case of the cart-pole, was episodic. The tra
tory always started in the vicinity of the unstable focusx0
and the episode terminated whenux2x0u.0.5. The rein-
forcement signal wasr 5e2e2ux2x0u. An example of learned
behavior and locations of the neurons are shown in F
8~a,b!. The parameter values of theQ learning werea
50.1, b50, g5l50.5, e50.05,t50.2. The period of the
limit cycle is T'7.2.

The second task was continuous learning without a ter
nal state. The trajectory started at some point, remote f
the focus~in our experiments fromx5y51), and the con-
troller received the reward signalr 5e2e2ux2x0u. To come
close to the focus, the controller must explore the dom
near it, place a number of neurons there, and learn the
respondingQ values. To solve this problem with the growin
network, it was necessary to wait for about 2000 cycle pe
ods. An example of the results is shown in Figs. 8~c,d!. In
this problem, sarsa was more efficient. The parameters
the same as in panels a,b.

The control of Brusselator motion, near the focus, alwa
occurred in hyperchaotic regimes. There were two posit
5-12
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FIG. 9. ‘‘Encephalogram’’ for the cart-pole
control. The self-developing network was use
when the optimal control regime was found
contained 26 neurons, but on the resulting chao
attractor only seven of them were used. Panels~a!
and~b! show the temporal activity for two of the
neurons~1 when control was performed by thi
neuron and 0 otherwise!. Panels~c! and~d! show
corresponding autocorrelation functions. Plo
show both determinism and randomness.
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Lyapunov exponentsl1,2.0 with close values,l1>l2.
Since the values ofl depend onc andb, which were varied
during control, the observed values cannot be related
single linear problem. Typical values were between 0.4
0.65.

VI. ‘‘ENCEPHALOGRAM’’ FROM A NEURAL
CONTROLLER.

An important way of brain studies involves recording
electrical activities and subsequent analysis of these rec
ings. We also made such recordings for the controlling n
work. We chose one of the neurons and when it was ac
we set the activity signal to 1, and 0 otherwise. The examp
of such activity record for two neurons from the network
26 and corresponding autocorrelation functions are show
Fig. 9.

The recordings show the presence of both randomn
~autocorrelation function decays! and some regularity~strong
high-frequency periodic component!. It is hard to make any
direct comparisons with the activities of a real nervous s
tem, but perhaps this observation may be pursued furthe
connection with brain chaoticity detected by electroencep
logram ~EEG!.

VII. CONCLUSIONS

Discrete control is used in some machine-learn
schemes. When the control is used to keep a dynamical
tem in the vicinity of an asymptotically unstable equilibrium
a typical outcome of the control problem is the creation o
chaotic attractor. Thus, we have an effect that we may
‘‘chaos with control.’’ It will be good to know if such chao
with control appears in the activities of the brain.

There are methods in machine learning and artificial n
ral network theories that can find policies to perform suc
04621
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control. Some examples of application of these techniq
are presented in the paper. We have also discussed pos
problems that can arise during such applications. This cod
technique in reinforcement learning with growing networ
appears to be efficient in controlling unstable equilibria. W
considered only one of the simplest neural network imp
mentations of reinforcement learning. There are many oth
with different types of neural networks, as described, e.g.
@2,1,19,15#.

We would like to point out that in reinforcement learnin
chaos in principle may be a part of the learning proce
According to Freeman, chaos may be important for
brain’s ability ‘‘to generate insight and the trials of trial an
error problem solving’’@6#. In RL such ‘‘insight’’ is pro-
vided by exploration with partially random policies~cf. Secs.
IV and V!. Similarly, one can generate achaotic policyby
using a chaotic dynamical system instead of a random sig
Note that some investigators have already attempted to
chaotic signals for solving optimization problems durin
learning of neural networks, e.g.,@26#. As our preliminary
results show, RL may work well with such chaotic explor
tion. If one builds a chaotic system into neural controll
then purely deterministic system will be able to produce r
domlike policies. We hope to present a more detailed st
of the subject in our next paper.
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APPENDIX A: EQUATIONS OF MOTION FOR
CART-POLE

We use the following notation:
x, coordinate of cart center~m!
u, angle between the vertical and pole direction,

clockwise motionu.0
g59.8, gravity acceleration (m/s2)
l 50.5, pole length~m!
mp50.1, mass of the pole~kg!
mc51.0, mass of the cart~kg!

w152mpu̇, friction in the axis of pole,mp5531026

w252mcsgn(ẋ), friction for the cart,mc5531024

f , external force, which is applied to cart and has to b
ance the pole.u f u5 f max, and its sign depends on the prese
state of the system,f max510 n.

First let us consider the cart-pole system moving with
friction. The kinetic energy of the system is

T5
1

2
mcẋ

21
1

2
mpẋ21

1

2

mpl 2u̇2

3
1

mpẋu̇ l cosu

2
.

~A1!

The gravitational potential energy is

U5
mpgl cosu

2
. ~A2!

The Euler-Lagrange equations~with friction and control
terms added! are as follows.

~1! Equation for the pole

mpl 2ü

3
5

mpgl sinu

2
2

ẍmpl cosu

2
1 f 1w1 ~A3!

or

2l

3
ü5g sinu2 ẍ cosu1

2w1

mpl
. ~A4!

~2! Equation for the center of mass,

mcẍ1mp

d

dt
S ẋ1

l u̇ cosu

2
D 5w2 ~A5!

or

~mc1mp!ẍ1
mpl

2
~ ü cosu2 u̇2 sinu!5 f 1w2. ~A6!

Equations~A4! and ~A6! can be rewritten as the following
system:

cosu• ẍ1
2l

3
ü5g sinu2

2w1

mpl
,

ẍ1
mpl cosu

2~mc1mp!
ü5

f 1w2

~mc1mp!
1

mpl sinu

2~mc1mp!
u̇2.
04621
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To simplify notation let us denote~taking into account the
relations forw i)

f 15g sinu2
2mp

mpl
u̇,

f 25
f 2mcsgn~ ẋ!

~mc1mp!
1

mpl

2~mc1mp!
u̇2 sinu,

c15
2l

3
,

c25
mpl

2~mc1mp!
cosu,

then we get

ü5
f 12 f 2 cosu

c12c2 cosu
, ẍ5

c1f 22c2f 1

c12c2 cosu
. ~A7!

The initial conditions used in this paper werex(0)
5 ẋ(0)5 u̇(0)50, u(0)5u0Þ0.

APPENDIX B: PROOF OF THE EXISTENCE OF A
POSITIVE LYAPUNOV EXPONENT FOR

PERTURBED MAPPING

Lemma. Let the linear dynamical systemuk115Buk , B
5 const have at least one positive Lyapunov exponentl1
.0. Then the system

vk115~B1eCk!vk ~B1!

also has at least one positive Lyapunov exponent provi
the perturbationCk is bounded,uCku,c and e is small
enough.

Proof. For the sake of simplicity let us suppose that t
eigenvalues ofB are real and nondegenerate, and there
basis of its eigenvectorse1 ,•••,en with eigenvaluesl 1 ,••
•,l n , u l i u5el i. Let vk5ake11bkgk , gkPspan$e2 , . . . ,en%
and ugku51. Then

vk115Bvk1eCkvk5 l 1ake11bkBgk1eCkvk . ~B2!

On the other hand, we havevk115ak11e11bk11gk11 ,
ugk11u51 .

Now we need the estimates ofuak11u and ubk11u. To ob-
tain these estimates, we decompose the perturbation
eCkvk by using the linearly independent but in general no
orthogonal vectorse1 and gk11 . Due to nonorthogonality,
absolute values of components may be greater than
length of vector itself. Letu be the angle betweene1 and
gk11. If eCkvk5ae11bgk11, then ueCkvku25a21b2

12ab cosu and uau,ubu<ueCkvku/A12ucosuu. Let

r 5 min
gPspan$e2 , . . . ,en%,ugu51

A12u~e1•g!u,

then uau,ubu<ueCkvku/r for any gk .
From Eq.~B2! we immediately obtain
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uak11u>u l 1aku2er 21uCkvku>u l 1aku2er 21c~ uaku1ubku!,

ubk11u<u l 2bku1er 21uCkvku<u l 2bku1er 21c~ uaku1ubku!.

Let us choose the initial datav0 such thatua0u.ub0u, and
kk5bk /ak or bk5kkak . Suppose thatkk,q, where 0,q
,1 — a fixed number. Then

ukk11u5
ubk11u
uak11u

<
u l 2kku1er 21c~11ukku!

u l 1u2er 21c~11ukku!
,q

providede is sufficiently small,

e,
qr~ u l 1u2u l 2u!

2c
5

qr

2c
~el12el2!. ~B3!

Therefore, for thise the inequalityukku,q holds for anyk.
Since uvku<uaku1ubku<(11q)uaku,2uaku, we obtain

uak11u>u l 1aku2ec2uaku5(el122ec)uaku. If el122ec.1
or

e,
el121

2c
,

then uaku will grow exponentially.
ns

E

et

ve

04621
Finally, sinceuvku>uaku2ubku>(12q)uaku, it should also
grow exponentially, which gives

lim
k→`

1

k
lnuvku> ln~el122ec!.0, ~B4!

and, according to Lyapunov theorems, the system~B1!
should have at least one positive Lyapunov exponent, p
vided

e,minH el121

2c
,
qr

2c
~el12el2!J .

If the multiplicity of the Lyapunov exponentl1 for B is
greater then 1, this proof can be repeated with replacinge1 to
an evolving vectorf k belonging to invariant subspace forl1,
while gk belongs to its complement.f 0 always can be chose
such that the relationsuB fku>el1 and uBgu<em hold, where
m is the largest Lyapunov exponent different froml1. @In-
equality forl1 may arise, e.g., from matrices like (0

l
l
g)), for

which norm grows asku l uk.# If all Lyapunov exponents of
the unperturbed systeml i5l1, like in the Brusselator prob-
lem, then Eq.~B4! follows directly from Eq. ~B2! with
weaker condition fore. This completes the proof.
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