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Chaotic neural control
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We consider the problem of stabilizing unstable equilibria by discrete corfttedscontrols take discrete
values at discrete moments of tim&Ve prove that discrete control typically creates a chaotic attractor in the
vicinity of an equilibrium. Artificial neural networks with reinforcement learning are known to be able to learn
such a control scheme. We consider examples of such systems, discuss some details of implementing the
reinforcement learning to controlling unstable equilibria, and show that the arising dynamics is characterized
by positive Lyapunov exponents, and hence is chaotic. This chaos can be observed both in the controlled
system and in the activity patterns of the controller.
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[. INTRODUCTION solve problems of posture control and keeping the chemical
balance of the body. We think that some essential features of

In this work, we study the characteristics of dynamicssuch control mechanisms may be studied with models for
generated by discrete controls of unstable equilibria, and alsstabilizing unstable mechanical or chemical equilibria. Such
focus on neural network learning techniques for implementproblems are typical of the theory of optimal cont8l. If
ing such controls. It is well known that a properly designedthe equation of motion and available control actions are
control can suppress chaos. We prove that under certain ciknown, this problem can be solved with the help of standard
cumstances control of an unstable fixed point can give rise tanalytical or numerical method8,9]. However, such meth-

a chaotic attractor even in linear systems. The main problemds may not be used by the nervous system. Instead of solv-
is, how do we find a control that can stabilize an unstablang equations, it perhaps learns from trial and error using
fixed point? It turns out that there are methods in machineertain types of experience such as pain or pleasure. In ma-
learning and artificial neural networK4,2] that can solve chine learning, such an approach is called “reinforcement
this problem. In fact, examples of systems that can learn ttearning” (RL) [2,1]. So we have studied model problems
perform such a control have been known for a long timeregarding chaotic stabilization of unstable equilibria with the
e.g.,[3]. Nonetheless, the natufeegular or chaoticof dy-  help of neural networks that utilize RL techniques. Except
namics involved in such controls has not been studied. Byor reminding that chaos can yield, under suitable conditions,
analyzing dynamical regimes, we show that, under discreteesirable results, we will not delve any further into the sub-
controls, chaos necessarily appears in the process of achigect of brain dynamics.

ing desired(meaningfu) goals of the control. Such controls  The paper is organized as follows. In Sec. Il, we give
are of interest in the field of artificial neural networks. By details of the discrete control that we have used in this work.
applying the technique of reinforcement learning, we dem-A discrete control implies that the control is chosen and ap-
onstrate that neural networks can be trained to realize thegdied at discrete moments of time, and it depends only on the
controls. current state of the controlled system. We prove that such a

Although our goal in this work is not to explain how the control of an unstable equilibrium can generate chaos. For
brain works, we would like to digress briefly to some exist-simple problems, where the unstable manifold of a fixed
ing works on brain dynamics, because it may be associateggoint is one dimensional, such a control is obvious. For more
with both chaos and control. Currently, we are not aware otomplex problems, examples of which are presented in Sec.
any one claiming to know for sure whether the brain dynamAll, special methods of learning are necessary. The basic
ics is chaotic, stochastic, or regular but complicated. Therédeas of reinforcement learning are described in Sec. IV.
are experimental dafa] indicating that the brain dynamics Section V describes the neural network that we have used,
may be chaotic. The question is, what is the role and originnumerical results that confirm chaotic behaviors in the result-
of chaos if the brain does use chaos in what it dekes7]?  ing dynamics, and some problems related with application of
There is no definite answer to this question; only a number oRL. Section VI contains an illustration of how the chaos in a
hypotheses are available. Furthermore, most of these hypothentrolled object can generate complex temporal activity in
eses lack support from experiments or model calculations. the controlling neural network.

The tasks of the brain include information processing and In short, our studies show that there are at least two pos-
control. Some information processing or computing func-sible relationships between control and chaos. Chaos may be
tions are now modeled by artificial neural networke\N), a natural result of control. Also chaos may be used as a
and almost none of the widely used ANNSs require dynamicakource of randomlike trials during learning. Earlier, there
chaos as amssentiaklement in their performance. Hence, it were attempts to utilize chaos instead of random signals in
is worthwhile to study possible connections between chaosupervised learning of neural networks. Methods of rein-
and control. forcement learning, which sometimes require special explo-

Among other activities, the brain and nervous system daation techniques, seem better suited for utilizing chaos. Per-
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FIG. 1. Mapping resulting from discrete con-
trol of unstable fixed point in Eq(l). (a) map-
ping (2) and an example trajectory; hekd)
=0; (b) increase in gradations of controlling
force diminishes the attractor size, three regions
correspond tof=+f,, 0 and —fy; (c) depen-
dence of the size of the attractor anfor the
mapping in pane{a); (d) nonsymmetric mapping
with unequal forces, which is used below in one
of the versions of cart-pole control. Asymmetry
makes(f)#0, which helps to control the cart
position.

haps the brain also generates/utilizes chaos in a similaemains constant until the next decision is taken; the choice
manner, but there is no evidence in favor or against such af action depends only on the state of the controlled system
thought. X(t) at the moment,.
From this definition, it follows that the controller should
Il. DISCRETE CONTROL CREATES CHAOS split the pha_se' space into dpmgins according to the chosen
value off. Within each domainf is constant. Therefore, al-

Let us consider a dynamical systers F(x), xe R" with ~ most everywheref/dx=0.

an unstable fixed point, [F(X,) =0]. We want to stabilize Discrete cont_rol of continuous-time dynamical systems
it by adding a control ternf. The resulting system takes the has been used in several problems of machine learning, see
form e.g.[3,10. We shall show that it may result in chaotic be-

havior of the controlled system, even if the latter is linear.
X=F(x)+f. Let us consider the simplest unstable system
The task of the controller is to choo§so that the trajectory X=Ax+f, A>0, @

remains in the vicinity of. . .
y 0% e/_vheref is the controlling “force.” Let us assume that, at

The resulting behavior of the system depends on the a
tual scheme of controlf may take any value between,, some _moment, the va!u’ez f(x(t)) has been c_hosen. Then
andf ., Or it can have values only from a discrete set; thef remains constant unm|<+1.=tk+ 7, and on this mterval,. Eg.
controller may choosé continuously or only at some dis- (1) can be _solved anglyﬂcally to o_btam the expression for
crete moments of time. In typical problems of optimal con-x(tk+1)' It 'E conve3|ent to EonS|der ;he mapﬁ'“?}k)
trol of technological systemis8], the control is usually con- _’X(xt'ﬁl)'f/ et us denotexy=x(ty), then X.,=e""x
tinuous both inf and time. However, the so-called “bang- +(eh -1 )".  thi ina d d he choick of
bang control,” with only extremal values df often proves The properties of this mapping depend on the choice o

optimal; one needs to find the switching curves or surfaces iff! the simplest case of binary contrbk = f, [3,10], the
phase space, where the value fashould change. For the control should reFurn a trajectory baqk to the f|?<ed pgfnt:
brain, it is perhaps more appropriate to choose the discrete ~ [0S9n&). This gives the following one-dimensional
scheme. First, all signals are transmitted by discrete pulse§'aPPINg:
Second, during certain periods, the neurons are in such states r _ M
that they are unable to process incoming signals. s 1= (%) (x)= evx—A, X/OA: (e*"=1)fy
In this paper we shall consider the case of discrete control “** 9, 9 eMx+A, x<O0, A
with the following characteristics: the controlling actidén (2)
can take only discrete values, usually from a finite set; the
specific value off is chosen by the controller at discrete The plot ofg(x) is shown in Fig. 1a). The mapping2) has
moments of timet,=kr, and after it has been chosen, it two unstable fixed pointsx,,,
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fo We can generalize these examples as stated in the follow-
Xu=x- ing theorem.

Theorem 1Let a linear dynamical system with the dis-
For initial data with|x|>Xx,, iterations ofx diverge. But for  crete controlf be described by equation=Ax+ f. Suppose
|x|<x,, the trajectory always remains within the domain the origin (x=0) is an unstable equilibrium with the set of
=X <X<Xy, provided Lyapunov exponentsy, ..., A, when there is no control
(f=0). If the control keeps the trajectories within a bounded
domain, then the dynamics in this domain will be chaotic
with a set of Lyapunov exponents identical to that of the

A<x,, e\<2. (3)

In fact, the trajectory stays within the intervalAs<x<A. . . .
Sinceg’ (x) =e"™>1 almost everywhere within this interval, equilibrium po_lnt W'thOUt the cont.rol. _

there should be a chaotic attractor. Its dimension is 1 and the, The proof is obvious. According to the definition of a
Lyapunov exponent is equal to. Therefore, the discrete discrete controlsee above we havedf/dx=0 almost ev-
“bang-bang” control adds a necessadglayed feedback erywhere. This means that the Lyapunov exponents of the

which creates chaos in a single differential equation. controlled system will be defined by the linear system
The relations in Eq(3) show that the control intervat = Au. But this is just the original system without control and
cannot be too large, so the set of Lyapunov exponents is the same.
. Similar arguments apply to linear mappingystems with
<A "In2. discrete time with discrete controls.

We now consider nonlinear system with unstable equilib-
rium points. If the controlled trajectories of a nonlinear sys-
tem stay sufficiently close to an equilibrium point, we have a
—\"1In2, the value ofA becomes equal ta,, attractor C2S€ similar to a linear system discussed above. However,

“collides” with unstable fixed point and disappears via cri- the Lyapunov exponents of the controlled and uncontrolled
sis[Fig. 1(c)]. systems will generally be different. Only a weaker statement

It is interesting that, for too large, the trajectories can &0 be proved. . _ _
escape from the attractor only near the point0. There- _ Theorem 2alet a non_lmear dynamical system with the
fore, to allow largerr, one can change the mapping in the discrete controf be described by, =F(xy) +f, whereF
vicinity of the origin by introducing the third control value has the continuous derivatil2F (x). Let the origin &=0)
f=0. For smallerr values, the attractor shrinks closer to thebe an asymptotically unstable equilibrium with the set of
desired statex=0 [Fig. 1(b)]. Therefore, the efficiency of Lyapunov exponent,, ..., N, A;>0 when there is no
control increases with the number of available grade$ of control (f=0). If the trajectories under control remain
Note that an increase in gradation does not change the valwégthin a small enough ball centered at the origin, then the

The smaller ist, the closer is the trajectory to the poixt
=0 (in the limit 7—0 we haveA~ rf ;— 0—this is the situ-
ation of optimal continuous bang-bang contrd\t 7= 7.«

of the Lyapunov exponent, it iglwaysequal toA. dynamics in it is chaotic with at least one positive Lyapunov
An equally simple problem is that of stabilizing a pendu- exponent.
lum in its highest point. The equation of motion in the vicin- et us denoteB=DF(0), then \;, ..., A\, are the
ity of the equilibrium point has the form Lyapunov exponents of the linear systam.,=Bu. If
_ [x|< 8, the continuity condition impliesDF(x)—DF(0)]
X=wXx+f. (4) <€ for somes ande. Therefore, we can writ®F (x) =B

. : : + eC(x) with some continuous and bound€gx) that van-
It is convenient to transform the second-order ordlnaryishes atx—=0. By choosinas small enouah. it is possible to
differential equation$ODE) to a system of two equations of - By 9 gn, P

he first order: letv—w-1x. then k= = Xt f/ havee as small as necessary. Now, the Lyapunov exponents
}\Ie |r_? ' th y—hw ' £ vari t;wy, i’_“’ - _“" of the controlled nonlinear system should be obtained from

ow, I We US€ Ihe change ot vanaplas=x-ry, v=Xx-y, the linear systemv,,,=(B+e€Cy)vy. It is clear that, for
then these equations take the form . )

small enoughe, there should be exponentially growing so-

lution and there should be at least one positiveas in the
case withe=0. The proof of this statement is given in Ap-
pendix B.

If we considerx=F(x)+f as a system with continuous

The first equation describes motion along the unstable mantime, its Lyapunov exponents should be determined ftom
fold of the saddle, while the second equation describes it DF(x)u. As in the previous case, it is possible to write
along the stable manifold. As any special control of the secbF(x)=A+ eG(x), where A=DF(0). Now, we can go
ond equation is unnecessary, the problem of inverse pendgrom a differential equation to its “stroboscopic map”
lum stabilization is reduced to Eql), but the controlling  x,,,=x(t,+7)=B,x(t,). Again due to continuityB,=B
force should depend on the sigand maybe the valleof  +¢C,, B= exp(A). This is a problem we have already con-
wXx+Xx. The discrete control described above brings up asidered; the only difference is that should be replaced by
chaotic attractor with Lyapunov exponefis, — w}. 7A; . This proves the following theorem.

u=owu+flo, 5

v=—wv—flo. (6)
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Theorem 2bLet there be a nonlinear dynamical system

described b= F(x) + f, whereF has continuous derivative

DF(x) andf is the discrete control. Let the origix€0) be

an asymptotically unstable equilibrium with the set of

Lyapunov exponentd, ... A,, A;>0 when there is no

control (f=0). If the trajectories under control remain Mpg
within a small enough ball centered at the origin, the dynam- ¢

ics in this domain is chaotic with at least one positive

Lyapunov exponent. | J f

The above theorems characterize the dynamics under cor
trol, but they do not show how to organize such a control.| Q Q

From the examples above we can see that discrete contr
does not convert an unstable fixed point into a stable one.

Instead, itshiftsits position. Then, movingaway from the FIG. 2. The cart-pole balancing task. Controller should choose
new unstable pointin the example above= = x,) may cor-  the proper direction fof after each time intervat such that the
respond to movingtowards the original equilibrium % angle ¢ for the pole will remain within — 8 ax, fmax, and the cart
=0). Such shifts should be made along the unstable antever hits the ends of the track,Xpna<X<Xpax- In the beginning,
possibly central manifold of the original equilibrium. There- the cartis positioned at the middle of the track 0 and the pole is
fore, the Comp|exity of the stabilization pr0b|em depends Orﬁet at some angléo that is within the admissible limits. In numeri-
the dimensionsl, andd, of these manifolds. cal calculationsfpa,=12°, Xma=2.4, and in most presented ex-

If d.+d,=1, as in the examples above, then the controfmplesty= —8° was used. The main conclusions, naturally, do not

strategy is obvious. But if the new position of the unstabledePend oo, though for| 6, less than about 2.9° the control task
becomes too easy — just the simple control strategy for an inverted

point has to “dance” in a higher-dimensional space, then aul ves th bl
intuition rarely can give ready recipe for the control. Let usP€n@um SOVes the probiem.
consider two examples whetk+d,=2 and 3.

z !

Appendix A. But the basic control mechanism and the main
difficulty can be understood from the linearized equations
Ill. EXAMPLES OF MORE DIFFICULT CONTROL TASKS near the fixed point=x= 6= §=0),

Note that the tasks considered in this section are difficult
not from the viewpoint of the modern control thedr8], . .
which we do not use here. The difficulty lies in the fact that X+ 30=99, @
there is naobviouscontrol strategy for them. We want to see,
how these tasks can be carried out by neural networks with
reinforcement learning11,3,12,1,2 As sample cases, we Xt mp| - f
have chosen one mechanical and one chemical system. 2(me+mg) - mg+my’
The mechanical problem is the so-called cart-pole balanc-
ing problem[3,2], Fig. 2 (sometimes called broomstick bal- . N " . -
ancing[13]). There is a cart, which can move along the line With the initial conditionsx(0)=x(0)=6(0)=0, 6(0)= 6,
#0. Herem, is the mass of the camy, and| are mass and

from — Xmax t0 Xmax- A pole is attached to the cart with one h of th lea is th leration d . d
end such that it can rotate in the vertical plane parallel to thet"9th of the poleg Is the acceleration due to gravity, an
riction terms are neglected. For the parameters used,

line of motion of the cart. Therefore, if the pole is set almost -
vertical, while falling, it moves the cart. If one pushes the=10my=1,1=0.5,g=9.8 and|f|=10, so the factor af in
cart, the push affects the pole dynamics as well. That is, bjhe second equation is very smélli44), and we get almost
moving the cart, one can change the position of the pole. Thetwo-stage” control: the forcef accelerates the cart, while
state of the cart-pole system is determinedxbigoordinate cart's acceleration works as a control force for the inverted

of the car}, x (velocity of the cart, ¢ (inclination angle of ~Pendulum.

the pole from the vertical and# (angular speed of the pole It may seem that this problem is equivalent to Ehe control
The control task is as follows: After every time interval ~ Of @n inverted pendulurtSec. 1). One can excluda from
the controller receives the values of the cart-pole state variEQ-2(7), and the equation fop coincides with Eq.(4), ¢
ablesx, x, 6, 6. The controller can apply a force equaltd ~ —«~0+ &, wherew and ¢ can be found from Eqgs7) and
to the cart, which acts during the nexinterval. The task is (8- But experiments show that the simplest strategy, when
to keep the angl@ within the limits[ — Omax,fmad, and the  depends only on the sign of6+ 6, works only whené, is
position of the carix within [_Xmaxvxmax]- If either 6 or x so small that it falls within the reSUlting chaotic attractor,
falls out of their limits the controller receives a failure signal, | fo| < fomax~2.9°. Exact comparison fomayWith A for the
and then the cart is returned to the positior 0, and the Problem(1) is hard, since the variable in Eq. (1) corre-
pole is set at some small anghg. sponds tof+ w16 rather thand. For o> gmayx. While @
The parameters of the system were taken ff{@inThey, converges to the chaotic attractor, the cart acquires speed.
along with the equations of motiofA7), are presented in This initial speed is not related with the current valuegof

()
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or 6, and hence cannot be compensated by a “pendulum’ing, playing backgammon, optimal chaos control and others
control. As a result, after some time, dependingfgnthe  [2,1,15,16.
cart hits the end of the track. Now we discuss some basic concepts of RL. More details
It is easy to show that the linear problem described byabout RL can be found, for example, in the excellent intro-
Egs.(7) and(8) has the eigenvalugsw,0,0,— w}. The two  ductory book 2] and a number of papers, e.pl]. The gen-
zero eigenvalues correspond to a translation degree of freeral scheme of RL includ€$) anenvironmentvhich is char-
dom. Therefore, the control should be organized in threecterized by its states, (for example, a system to be
dimensional subspace, and it is hard to organize it intuitivelycontrolled, such as the cart-ppland (i) anagent (control-
Comparison with inverted pendulum shows the role of theer) who can perform actioa (in the cart-pole example, the
center manifold. action is application of selected forgeEor the sake of sim-
The second control prObIem is related with chemical re-pncity, we shall assume that bothand a are discrete. The
actions. We have chosen the well-known system with oscilagem receives information about the ststeat timet, and
latory behavior, the Brusselat¢d4]. In specially chosen ngertakes an actioa,, which influences the environment.
variables it has the form After each action, the agent receives information about the
next states;,;; and a scalar signal; called reward The
reward may evaluate either the consequences of the last ac-
tion or just the current state of the environment after a long
sequence of actions. In the latter case the reward is delayed.

Herex, y, ¢, b are the concentrations of reacting chemicals. ItFOr example, while the cart and the pole are within the speci-

is supposed that andb are kept constant, while andy can fied limits, the reward is zero. Whef or x goes out of its

vary with time. It is easy to check that this system has a fixedMit: the reward is—1. Another example is the game of
pointx=c, y=b/c. If we fix c=c,=1 and varyb, then for checkers or chess, where the reward is the outcome of the

smallb<2 the fixed point is stable. Ai=2 the Hopf bifur- game. Negative rewards sometimes are callgd “punishment”
cation occurs and oscillatory behavior can be observed. Fdff ~Penalty.” The rule, according to which the agent
the numerical experiment, we have chogeab,=3. The ChoOses its actiom(s,a) is calledpolicy. Usually a policy is
amplitude of the limit cycle for this choide=b,, is about 3 the probability of taking the actioa. Determlnlstlc cho_|_ce .
in both x andy. The task was the following: the controller means that for only one of the actions the probability is
receives the current values gfandy. Then it can set the nonzero. . . .

values ofc=f,c, andb= f,b,, where the factor$; andf, 'The task_ of the agent is to work out aptimal policythat
can be equal to 0.8, 0.9, 1.0, 1.1, or 1.2. These values of brings maximal total reward during a large or infinite number
andb remain unchanged during the next controlling period®f actions. In the latter case the Sl ;1 mzixf)e infinite,

of the lengthr. It is necessary to keep the valuesxaindy ~ and the discounted total reward used®i§ ,y* "r, 0<y

in the vicinity of the point (1,3). At=1, b=3 this pointis <1 (usually|r,| is boundedl

x=c—(b+1)x+x2y,

y=bx—x2y.

an unstable focus with the eigenvaluks,=(1+ \3i)/2, Interaction of the agent and the environment is usually
therefore the unstable manifold is two dimensional. There i§léscribed in terms of the transition probabilitie8
also no obvious way of control in this case. =P(a,s,s’) from the statesto the states’ after the actiora,

To solve these model problems, we used the methods &nd by the value of the rewaR=R(a,s,s’) after such tran-
reinforcement learning. Note that the solutions for the cartSition. The value ofr, in numerical experiments is always
pole problem were published long ago, but we are intereste@dual to a value oR. If all P and R are known, then the

here in the analysis of the resulting dynamics. optimal policy can be found by the methodsdyhamic pro-
gramming(DP) [17,8,7 [sometimes the ternMarkov deci-

sion processMDP) is used. Within this approach, it is con-
venient to define thevalue V7(s) of each states as the

In order to explain the learning algorithm, we have to sayexpected total discounted reward, if the agent starts to act
a few words about reinforcement learnifigL). Sometimes from this state and follows the policy. Similarly, one can
it is called “learning with a critic.” The main task of RL is define the valu€™(s,a) of each actiora at the states. The
to work out optimal sequence of control actions to achieve &et of V or Q is a solution of a certain linear system of
goal based only on evaluative feedback, when there are nequations. Values oV and Q are closely related: if one
examples of successful control. knows allV, P andR, it is easy to calculate al) and vice

RL has been known for about 50 years, but rapidly in-versa.
creasing interest in it arose in the late 1980s and 1990s, when To obtain an optimal policy, the method pblicy itera-
several approachdtheory of Markov decision processes or tion is used. If the agent chooses an action with the largest
dynamical programming, eligibility traces, temporal differ- Q™ [instead of the current policy(s,a)], then for this new
ence learningmerged together forming the modern theory policy 74 all V™1=V7™ and Q™:=Q". This new policy in
of RL [2,1]. Currently, it is not as widely known as, for turn can be improved and so on. It has been proven that this
example, neural networks. Its theory is under active develprocess converges to an optimal policy with action values
opment. Its recent applications include control of complexQ* (s,a). On the other hand, if one knows & (s,a), then
mechanical systems, navigation of robots, elevator dispatcltthe policy itself can be easily found: every time one must

IV. BASICS OF REINFORCEMENT LEARNING
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choose the action with the large®t . One of the RL algo- The resulting estimates @J correspond to an optimal policy
rithms, described below—th®@ learning—estimates the val- and there is no need for policy improvemgithough, the

uesQ* almost independently of the current poliay current policy should make it possible to evalugtdor all
It should be noted that rigorous results correspond only te@ssential states and actipns
the case where the statés Markovian, that is, all the tran- For the choice otr, usually there is no strong theoretical

sitional probabilities depend only ananda, but not on the restriction. Proof of convergence for these methi@i4] re-
previous history. This allows one to write a system of equa-quires thata, should slowly decrease with time so that
tions forV or Q, which simply relate their estimates at two 3,a,=x, S,a?<% (for example,a;=a,/t). Sometimes,
sequential time steps, the methods work well for nondecreasing, which may
even not be very smaffor some problems even=1 is the
T — ’ ' T ! best ChOlCd:l])
vis) ; W(S’a)g Pas.s)R(@,ss)+ V7 (s)]. The rate of convergence of RL method®oth TD and
9 Monte Carlg does not follow from the theory. Such results
are empirical and based upon a large number of computer
Sometimes, in practice, methods based on MDP approacékperiments. For any given system, the methods may behave
prove very efficient even in cases where states are noniifferently. However, for working out a good policy, one
Markovian. may not need @reciseestimate ofQ, in fact, one needs only
The situation becomes more complicated when the transig know whichQ is the largest. Experiments shd@; 1] that
tion prObabilitieS are UnknOWn, and the agent has to work OUTD methods usua"y provide such information faster.
the best policy onlyfrom its own experiencebtained from Efficient implementation of these methods include two
previous actions and rewards. Modern algorithms of RL camnore ideas: eligibility traces, which come from learning
find such a policy in an efficient way. They use the conceptsheories[18], and exploration/exploitation tradeoff, which is
of values of states and actions from dynamical programminga common prob|em in stochastic control.
along with some ideas from learning theories. There are tWo The idea of eligibility traces was developed originally for
main classes of metho@,1]: Monte Carlo, whereV andQ  model neurons to reproduce effects similar to conditional
are estimated as averaged reward received after correspongflexeq 18]. These reflexes relate two events, “neutral” and

ing state and actiofit requires many repetitionsandtem-  “essential,” that are separated by a time interval. The idea
poral differencesTD), where the estimates of these values\yas that neurons and connections responsible for processing
are received by iterations. neutral events, for some time after them remain eligible for

According to[2,1], TD methods are more popular. They changes. Essential events can cause these changes. As a re-
are based upon the following simple recursive relationisylt, after several repetitions, a neutral event may cause the
When we are trying to estimat¢ experimentallythe esti-  same effect as an essential one. The corresponding math-
mates for different states are related a¥(s;)  ematical model of neurons, besides the usual connection
=20 Tkrtr1=rrs1t YV(St11), @nd therefored=ri.;  weights between neurong;, , includes values;;, called
+ YV(si+1) —V(s)=0. Note that for theexact Vvalues, eligibility traces The updating rule for the weight takes the
satisfying Eq(9), only (A;) =0, where averaging is taken by form Aw;;;~e;;;ry, wherer, is a signal generated by “es-
all possible actions, and all possible states;. ; after them.  sential” event. Initially, alle;,=0. When a connection be-
Nonetheless, it has been fouf@l1] that the current values comes eligible for changes, the correspondigjset to 1(or
of A, instead of the average values, can be efficiently usethcreased by 1L Then it exponentially decays ., ;=\e;, A

for V updates, <1. Therefore, for some time after resettingthe corre-

R sponding connection can change, but later such a possibility

V(s)=V(s) + aid,. (100 vanishes until new resetting.

In the reinforcement learning, this idea has been imple-
Initial values forV may be arbitrary, e.gy=0. mented as an attempt to solve the problencrefdit assign-
Similar Updating scheme eXIS[tE] for the action values, ment When the reward is a result of many actioa§’

. a;_1 ..., onewould like to know, which of these actions is
Q(st,a)=Q(sy,a) tafri1+ yQ(si1,ai+1) —Q(st,a)].  responsible forr,,,. How do we assign a correct credit to

11 eacha,, so that we have the correct updating of value func-
tions and improving policy? In general, the answer to this
8uestion may not exist, but for ergodic Markov chains the
deffect of each actior(or being in a specific statedecays
exponentially. Therefore, at least for some problems, expo-
nentially decaying eligibility traces may partially solve the
problem of credit assignment. The corresponding class of RL
algorithms has been called TD), where\ stands for the
decay rate of the eligibility traces. For each stéaie state-

It has been called the “sarsa” scheme because of the strin
St,a¢,l1+1,St11,8i+1- The sarsa scheme provid€y esti-
mates for the current policy, but it can be easily combine
with policy improvement: decision regarding which action is
to be taken, can be made from the lat@svalues. Another
well-known approach is Q learning.” The relation for it is

Q(s.a)=Q(s.a) action paiy there is a variable(s) [or e(s,a)]. Itis setto 1
+afry 1+ ymaQ(s.1,a)—Q(s;,a)]. (12  every time the environment is in the statéand an actiora
a is chosei Thene(s) exponentially decays to O unless the
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state returns te. This helps updating simultaneously mawy V. NEURAL CONTROLLING ARCHITECTURE AND

or Q values, which are relevant to the latest actiois) NUMERICAL RESULTS

=V(s)+ ae(s)A,, or Q(s,a)=Q(s,a) + a.e(s,a)A;. Ac- A. The problem of phase space partitioning

cording to[2,1], eligibility traces may significantly acceler- To apply adiscreteversion of RL to the problem of con-

ate RL especially in the case of delayed reward in WhiCqrol of a dynamical system withontinuouslychanging state,

nonzeror appears after many actions. it is necessar N :
) T . y to make a partitioning of its phase sgace
The task considered may lepisodic that is, some of the _ UA., ANA=. In[2], itis called “tile coding.” Each

statess; areterminal When the system falls into a terminal domainA, of this partition corresponds to one “states

H I (I
state, the brocess stops. For subsequent Iearnmg., another “Rhich determines a controlling action. Then with the help of
sode should begin. Note that the cart-pole balancing problers, it is necessary to find the best policy
has been formulated as an episodic task. When the condi- I,:rom the view point of the theory of.Markov decision

tions forxor ¢ are V'°|ate(.j’ th.e system is con&dgred. to be Inprocess, the main requirement is that this partitioning should
a failure state,_after Wh'.Ch it is “?s.et:. For episodic tasks e Markov. That is, the probability with which a trajectory
when a new episode begins, the eligibility traces also shoul mps from partitionA; to A; must not depend on its previ-
beAsetttrcl) zero.bl is related with the followi tradi ous history. Such Markov partitions are used, e.g., in ergodic
i .nto \er probiem '? relate th h the 1o OW'”% C(f)n”ra Ifc:h theory of dynamical systenj&1]. But usually it is very hard
lon. 1o Increase periormance 1t 1S hecessary 10 101oW &, 1, 4 sych a partition and to prove whether it is Markov or
best policy, tha\_t s, o select actions with the larg@sesti- not. It is known that the methods of RL may work for non-
mate (such policy is callecgreedy. But to get correcQ glarkov partitions very well. On the other hand, non-Markov

est!mates, It is necessary _to tr_y_ all or a Iarge_ iy artitioning may be a cause for their poor performance.
actions, most of which are inefficient. The learning system The main problem with partitioning is that it should allow

must explore possible actions. This exploration is achieved 5 good control policy. If it does, then most probably RL will

usually by two methodsti) Set high initial values for all  fing this policy. If it does not, nothing can help. The problem
states/actions. This encourages the learning system o try g}t partitioning seems to be one of the hardest, and it requires
states and actions, but only during some initial time intervalg good intuition, experience, aradpriori information about
(i) Follow nondeterministic policy, choosing nonoptimal ac- the problen{1] (for example, in the problem of stabilizing a
tions with small probabilitye (e-greedy policy. Also, ex-  fixed point most important is the partitioning of the unstable
ploration is necessary when the environment is nonstationand center manifoldslf the partitioning has to be very fine,
ary. Then the optimal policy may change with time, and thethen it may be better to use a different kind of coding. For
learning agent should be able to find the new one. example, one can use a continuous approximations of depen-
All these methods can be generalized for the case of cordence(point of phase spage-(control action [1,2] with
tinuous states and continuous actipad]. This substantially the help of a neural network. But our model problems allow
increases capabilities of the methods, but at the same tinf@ work with rather coarse partitions, so we used the simplest
creates new problems wit®(s,a) or V(s) approximation. approach. 13,10 the partition of the cart-pole phase space
For continuous actions, there is also the problem with thdas been done with the help of so-called “boxes” — rect-
choice of the best action. In this paper we wanted to stud@ngular cells of different sizes. But, as our experiments
some details of application of RL to dynamical systems anchoW, self-organizing neural network provides better parti-

limited ourselves to the simplest implementations of RL.  tiONiNg.  the effic han ¢ oartitioning is th
It is important to note that, despite the relative simplicity One of the efficient mechanisms of partitioning is the use

: e : of vector quantizingVQ) networks or self-organizing maps
of general idea, any specific implementation of RL may re-
quire a thorough accounting of the details. For example, per(-SOM) [.22 24. These. NEINOIKS have a;set of reference vec
. tars v, (input connections and they split the whole space
formance of the methods sometimes depends on the proper, . o . !
. Imto so-called Voronoi or Dirichlet cells: thieh cell consists
choice of the parameters, y, \, € (examples are shown

. . . o of the pointsx, for which the vectow; is the nearest of all,
below). Also, if the system is non-Markoviafas it is often P : K

i X tidethen there i fof f(XE A, if argmin/x—v,|=i). Such partition will depend on
ecasein prac_lt)e en there IS no prool of CONVErgence Of yhe nymper and location of the vectags, and on the metric
the above technique. It is known that in such cases the resul

. ) : fRed for calculation of distances.
of Q learning may oscillate between several polidi€s(ex- So, if xe A, then the VQ network activates thith neu-

gmple§ wiII. be show)a_ Another possible source of osgilla— ron. We associate with it the values@{s; ,a), correspond-
tions is pointed out in[19]: convergence in the “policy ng to the states; and operations, related with the RL and the
space” may be rather complex and may resemble a stablgnoice of control actior(so this should be an “intellectual
focus. Convergence is accompanied by wandering betweeteuron,” which may represent a neurons ensemble or a sepa-
various “neighboring” policies. rate network This neuron receives current reinforcement
We should also note that the described approach of valugignal, calculates the value df,, updatesQ, chooses the
functions is the most general, but not the only one in thenext control action, and sends this information to other neu-
theory of RL. For other approaches see, d11,12,20,15 rons and the correspondirigo the controlled systernfFig.
and references therein. 3).
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Dynamical System

FIG. 3. Scheme of the simplest neural con-
Current state x(t) ' troller with reinforcement learning. Information
about current state of dynamical system goes to
vector quantizing network, which determines,
which domainA; it belongs to. Then the corre-
sponding neuron is activated: it calculates the up-

VQ neural network: reward r; dating termA (11) or (12), updatesQ(s;,a,) if
activates é-th neuron if x(t) € A; e(s))#0, and chooses the next actiag from
the set of possibl¢a,}. Then it sends the values
of A (for current updateandQ(s; ,a, ) (for cal-

culating A next time to other neurons, and the
. necessary contrdl(a, ) to the dynamical system.
newron 1 | | nmewroni | | neuron N | ~——] The reward is estimated from the current state
81, e(s1), 8i e(si), sN, e(sw), by a separate subsystem, e.g., a set of special sen-
Q(s1,ax) Q(54,a) Qsn, ax) sors, then it goes to neurons farcalculating.

T
action a, ‘

Q(si7 a’*)y A

control f(a.)

One of the advantages of SOM networks is the ability to We repeated their results, and studied the problem in
adjust the partitioning to the available set of “experimental” more detail, because we wanted to explore both the charac-
data points, or even reproduce their distribution densityteristics of the regime arising under control and the capabili-
Among numerous applications of such netwofRg], there ties of the RL techniques. We used t@dearning(12) and
are applications in control, e.g., robot movemej#8,15.  sarsa(11), which did not exist when the worl3] was pub-

But standard algorithms of SOM learning are not good forjished.

our problem. For this reason we applied another type of VQ = as it can be expected, the control occurred in a chaotic
network, which can_be called “self-developing network.” It regime. The estimated values of Lyapunov expong21s

is based upon the idea of network growsee, €.9.[25).  yere very close to the eigenvalues of the linearized systems
The algorithm was very simple: we placed a new neuron a{n and (8) {0,0,0~w}, w=5.62. The typical set of

the current trajectory point when the nearest neuron to i : ; -
i yapunov exponents obtained numerically for the original
proved farther than some threshold distadge The values nonlinear modelsee Appendix Awas{5.63,0,0,—5.63 in

of Q for this new neuron are copied from its closest neigh- . . . . _
bor. Performance of this technique depends on the value od agreement with the linear analysis. They slightly varied

de, and on the choice of the metric in phase space. As ou r dif_ferent gontrol schemes, but the difference with the
experience shows, it is not hard to find appropriate values b§nalytical estimates never exceeded 0.1.
trial and error method. At the initial stages of learning, this oM the linearized equatiort) and(8), one can get the
approach leads to variable number of the states, but botequation for the pole alond=w?6+ ¢, |$|=29.3. The re-
sarsa and)-learning methods can be easily adopted to it. sults of Sec. Il give the estimate for the upper limit of the
control interval asrm,=w 1In2=0.12. But RL methods
B. Cart-pole control could not find a good policy for close tor,., because the
cart rather quickly hit the end of the track. It proves that the
control interval ¢=0.02) used i3] is close to the practical

allowed limits onx and 6 were |x|<Xym=2.4 and|d| upper limit for this control scheme. We also used this

<6,,=12°, respectively. The partition was organized as a/a/ue-

number of rectangular cells, formed by hyperplanes located 10 check the performance of RL algorithms, we wanted
at x=+08 +24 9=0° +1° +6° +12° x=+05 to find a coarser partition. With it, all possible policies can be

v h=+50. +o This g oy f X 6X3%3 tested to find the best one. Then the results of RL methods
+%, 0==30, =e. This gives a partition o 26X X can be compared with this best policy. Note that the partition
=162 cells. The control technique was the simplest “bang

-~ . 62_ O . . . . . _
bang” — application o th forcé equal o eithers f,or (01121 90557 © 1 SR POISES FETeS, Lo pee
— fnax to the cart, wherd ,,,=10. As it was shown i3], yimp '

the RL methods were able to find a good policy, and the pol s our results show, the partition indeed may be coarser, but
was kept upright for a long time ' he problem should be slightly nonsymmetric.

In the work[3], the “boxes” partitioning of phase space
was taken from another paper on machine learfi@j. The
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FIG. 4. The problem of cart-pole control, 12-
cell boxes partition of phase space. Examples of
Q-learning performance for different parameters.
Shown is the balancing time for learned greedy
policy after each episode. Testing of the balance
time stopped after=6000, and this value corre-
sponds to the best policy. Dots show the duration
of the corresponding episode. For all examples
episode episode the initial position of the pole was the sandg
d) =-8° (@ a=0.1, B=0.01, y=A=0.5, ¢
=0.1 (e-greedy policy; (b) same as panel a, but
€=0 (purely deterministic policy, exploration is
due to system’'s chaoticity (c) «=0.1, B
=0.01,y=0.95,A=0.5, €=0.1; (d) same agc),
but e=0. Therefore, policy randomness may
both improve and spoil the performance. Optimal
values of parameters do not follow from theory,
but can be found in numerical experiments.
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1. Coarse boxes partition needed, one more policy becomes optimal. Therefore, for a

As we mentioned in Sec. Ill, the problem with the cart @ndom choice of policy, the probability to find a good one
position control arises because, for large initial anglgg), ~ With tg>100 is 2%, and that for the optimal policy is less
the cart acquires some speed during the convergengeamf than 0.05%. To show the importance of symmetry breaking,
the attractor. With a large number of partition cells the cartveé made similar tests for symmetric control with=
sometimes gets more pushes to the right or to the left and fmax, and the bestg was about 23.
this helps compensate for initial and all subsequent impulses. When applying RL methods to this problem, we tested a
But similar effect can be easily obtained if the controlling number of different values o&, vy, €, and\, and the two
forces acting to the left and right are made unequal, saymethodsQ learning and sarsa. In both methods, we used the
— fmax and +0.9f ., the partition of unstable manifold is e-greedy policy based on the late@testimates.
chosen to be unsymmetrical. This way it is easier to control The problem naturally splits into episodes, the end of each
the motion of the cart. It is necessary only to switch betweerepisode being the fall of or 6 outside their limits(terminal
the “left” and “right” modes at proper times. This can be state in terms of RL While the cart and the pole remain
done by partitioning the center manifold: the important fac-ithin specified limits, the controller receives the reward
tors are the signs of andx (where the cart is and where itis =0, and at the terminal state the reward — 1. Therefore,
moving to. nonzero reward comes only rarely, but learning goes on all

The .unstable manifold corresponds to the variable the time: TD methods change the values$uch that they
=wh+ 0, and for unsymmetrical partitioning we set the become consistent with the trajectory of the dynamical sys-
threshold values oti equal to +10, *. For the center tem. The value ofe, slowly diminished with time asy,
manifold, we used only zero threshold for botAndx. This  =ag/(1+ Btiearn) ,» Wheret,q,, is the total learning time,
gives only 3x2x2=12 cells and #*=4096 control poli- including the duration of all previous episodes.
cies. It is easy to find an optimal policy just by trying them  The quality of the currenQ estimates(and hence the
all without any learning. Thus, we can check how good is thecurrent greedy policyhas been verified experimentally by
solution obtained with the help of RL. evaluating the correspondirtg value. We estimatedy at

The “balancing times”tg, for mostdeterministicpoli-  the end of each episodéhis time is not included ifjqz.n),
cies, depend on the initial anglg0), butqualitatively, the  whenx or 6 goes out of their limits and the controller re-
distributions oftg are similar. For9(0)=—8°, for example, ceives nonzero rewand=—1. The process of learning then
4030 policies have 0.88tg<5.02 (more than half give the can be shown as a sequence pfvalues. Sometimes, these
worst result. The three best results are: one policy with  tg values stabilized at certain number, and sometimes they
=25.60, 64 policies withg=133.58, and the optimal policy oscillated. The examples are shown in Figs. 4—6. Note that
with tg>10° (most probably, it is infinite For §(0)= usuallytg does not coincide with the episode duration even
—3°, three best results were 29.62 policy), 139.58(64 if the policy is deterministic §=0). During the episode the
policies, and also one optimal policy with most likely, ~ values ofQ are updated, and the current greedy policy may
=, For positived(0), when large negativé values are not change.
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FIG. 5. The problem of cart-pole control, 12-
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) . learning may be poor, probably, because of non-
. episode 0 episode d) Markovian partitioning of phase space. It is
of o known that for partially observed Markov process
SE e Q learning may oscillat¢l]. «=8=0.01, y=\
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The total number of test runs was about 1000 for everyalue depends on the limit of episode duration, it is instruc-
method. The learning period was limited: we had the numbetive.
of episodes<500, the duration of each episoge6000(both For Q learning, the best policy has been found at least
in learning and testing,z=6000 in the figures corresponds once (T ,,,=6000) in 43% of all runs with the average value
to the optimal policy, and the total learning time=50000.  of T,=1230, in 51% of rundl =133, and only in 6% a
To characterize the RL performance, we used the followinggood policy has not been found at all. For sarsa, similar
values:(1) the besttz value T4 found during learning(2)  result was 69% T,=469), 29% and 2%.
the average balancing timg, for the period after a good To find out the role of the exploration, we compared only
policy with tz>100 has also been found. Even though thisthe results fore=0. They were 29%T,=1813), 67%, and
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- i - : FIG. 6. The problem of cart-pole control, 12-
of o S R cell boxes partition of phase space. Several ex-
0 50 100 amples of the sarsa scheme performantes
episode episode —-8°. (@ a«=0.1, B=0.01, y=0.5, A=0.5, €
] ¢) d) =0.001; (b) @=0.01, 3=1.0, y=0.95,\=0.9,
St S €=0.01; (c) «=0.1, =0, y=0.5, \=0.5, €
0 2F 0 2 =0.0001;(d) @=0.1, =0, y=0.5,A=0.5, €
Eof £o =0
+ 0O 3 + O .
et g
oL s
cC —E c -
&) E ]
&1 &
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4% for Q learning and 62%T,=531), 37%, and 1% for the
sarsa scheme. Therefore, exploration increases the chances to
find the optimal policy.

As it is noted in[1], oscillations in Figs. 4—6 may be the
result of non-Markovian states. We tested the partition with
the help of the entropy estimates. For the optimal policy, we
generated a long trajectory of A@ata points and evaluated
the probabilitiesp; of the trajectory to fall into each of the 0
partition domaing\; , the pair probabilitie;; (A;—A;) and
triple probabilitiesp;j, (Ai—Aj—Ay).

For a true Markov chain the following relations should be
valid,

a)

100 1000

10

1

100
—

Success

Pij=PiPij,  Pijk=PiPijPjk= Pij Pjx (13

Z%

whereP;; are the transition probabilities. Since the trajectory 0
is long, most likely the probabilitiep; are close to their
limiting values, sop;==;p;P;; . Po

h First, ltdl.s. possl?lﬁ to CT]eCkftheMCOEdltloﬁgss)' Erorg FIG. 7. Dependence of the self-developing network efficiency in
these conditions it follows that, for Markov chain, the I €N the cart-pole problem on the parametgtr For eachp, value 10

tity ,Aij,k:pijkpj/piipikzl should hold. To characterize the egt ryns have been done, learning was terminated after finding a
deviation from 1, we calculated the mean valuepgjicy with t5>1000 or after 500 episodea) The number of

(maxAj aAiTkl}> for all p;;>0.01, and it was equal to 1.8 neurons in the network at the end of learning after the good control

instead of 1. policy has been fountblack circles or after 500 training episodes
Another characteristic may be the entropy. For the case aempty circles. (b) The percentage of the runs where good control
Markov chain and limitingp; , the following must hold, policy has been found.
trol. The set of coefficients; in the tests described below
le—z piInp;, was the following: ¢;=c3=1/Xnmax» C2=1/60max,» Ca
! =1/(5.69,2-
The first neuron was placed at the target poigf,=0,
that isv;=0. When the trajectory moved too far from all
Hy=— ilnp;i=— i Pii |Inp; o
2 %: Pij 1N Pij 2.: p'(zj: ") Pi existing neurons, a new neuron was added, and the initial

values ofQ for it were copied from its nearest neighbor.
~S pPiInP; =H,+ oH Since, in this problem, we are interested in keeping the tra-
TR e ' jectory close to 0, we used additional factor to prevent from
having too many new neurons far from the target point. So,
the final criterion for creating a new neuron was the follow-
Ha=—2 pij N pij=—> pi< > Py ij) Inp; ing: Let the trajectory be at the poirt andv, correspond to
Ik ! Ik the nearest of existinl neurons. Ifp(x,V,) > poe*"**ard
then we create a new neuron witky, ;=X, which corre-
— 2 Pi P” ( E ij) In P” - 2 ( E Pi P” ) Plk In ij sponds to the Stam\‘+1, and SetQ(S,\Hl,a) = Q(Sk ,a). In
Y K e numerical experiments, we us&d= 0.5, which proved to be
=H,+265H, optimal.

Changes in the value gf, lead to a sort of phase transi-
s0 Hy—H,=H,—H;, H;—2H,+H;=0. Our estimates tion in the algori'ghm behav?qr. For'smaib valueg the num-
gave H,=1.68, H,=2.61, Hy=3.08, sOAH=H,—2H, ber of neurons did not stabilize until the upper I|m|t_frbh§\s _
+Ha,=—0.46, so the deviation from a Markov chain is ob- bgen reached. The performance of RL algorlj[hms in this situ-
vious. This may explain the oscillatory behavior@nlearn- ~ ation was not good. For too large, the partition was too
ing [1]. coarse. There was an interval pf values, in wh_|ch the

performance of the methods was the best, see Fig. 7.
2. Self-developing network . T_he growing network helped ol:_)tain even simpler parti-
; _ tioning, including only eight neuror(@nstead of 12 in boxes
To make a self-developing netyvork, we used a speciajoy symmetric controlthat is, with the same values 6fin
metric in phase space for calculating the distapdeom a  poth directions with most probably infinitetg . Another in-
point x={x, 6,X, 8} to a vectorv,, corresponding to thkth  teresting effect was that, for self-developed partitions, usu-
neuron: p(x,vy)2=2(c;x;— Vi )%. The ranges for different ally the value ofAH was smaller than that for 12-cell boxes.
components ok differ too much, and without a proper met- Once we obtained a partition with 13 neurons for which
ric it is necessary to use too many neurons for efficient conAH=—0.02. But, when we set this partition manually and
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a)

3.3

_ b)

FIG. 8. Control of the Brusselator model. Here, in contrast with the cart-pole, there are more gradations of controtiapadiotcan
take 5 values eac{®.8, 0.9, 1.0, 1.1, 1.2 of their “main” valuegy=1 andby=3), that is there may be 25 different control actions. Dotted
line shows the stable limiting cycle in the model, and the cross — the unstableXeclisy=3, in the vicinity of which trajectory should
be kept by the control. Black circles show the location of the VQ network neurons, which correspond to discretg ,staged in the
control. Solid line shows the trajectory under deterministic control, learned by RL with self-developing VQ network. Two different kinds of
problem were considere@, b Like in the cart-pole problem, initial data were chosen in the vicinity of the focus, and when the trajectory
moved too far away from it, the controller received a failure signal, after which new episode started again from near the focus. Neurons
appear only near to the focus, and a few of them are enough. farstlows the controlled trajectory in larger scdle.d) Learning started
from the limiting cycle and was not splitted into episodes, and the reward signal was negative with the value proportional to the distance
from the focus. Here neurons cover the whole neighborhood of the cycle, and their number is much larger.

tested the performance @J learning, the convergence was than that for the cart-pole. Also, there is no need to introduce
not very good. Therefore, even the closenessptimalcon-  any special metric for the use of a self-developing network.
trolled behavior to Markov chain does not guarantee good We considered two kinds of control problems. The first
convergence oR learning. This may happen, for example, if one, as in the case of the cart-pole, was episodic. The trajec-
the properties of transitional probabilitieB(a,s,s’) are tory always started in the vicinity of the unstable foous
policy dependent. It also proves that sarsa can find optimaind the episode terminated whéx—xo|>0.5. The rein-
policy faster than Q learning, but may also “lose” it more forcement signal was=e—e?*~*d. An example of learned
easily. The problem with convergence still remains. behavior and locations of the neurons are shown in Figs.

In all cases, the learned control regime was chaotic Witl’B(a,b)_ The parameter values of th® learning werea
the values of the largest Lyapunov exponent between 5.620.1, 3=0, y=A=0.5, e=0.05, 7=0.2. The period of the
and 5.72. limit cycle is T~7.2.

The second task was continuous learning without a termi-
nal state. The trajectory started at some point, remote from
the focus(in our experiments froox=y=1), and the con-
troller received the reward sighake— e?*=xl. To come

In this case, the unstable manifold is two-dimensionalclose to the focus, the controller must explore the domain
and it is also hard to propose any intuitive control strategynear it, place a number of neurons there, and learn the cor-
(though there exists a very simple control strategy that hasesponding) values. To solve this problem with the growing
been found by RL This problem proved to be simpler than network, it was necessary to wait for about 2000 cycle peri-
the cart-pole one. We obtained good results with boxes, rareds. An example of the results is shown in Fig&,8. In
domly distributed neurons, and self-developing network. Wehis problem, sarsa was more efficient. The parameters are
shall present results only for the self-developing networkthe same as in panels a,b.

(Fig. 8. An interesting feature of the Brusselator control is  The control of Brusselator motion, near the focus, always
that the convergence of RL algorithms was essentially bettesccurred in hyperchaotic regimes. There were two positive

C. Control of a periodical chemical reaction
causes hyperchaos
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activity

0.5
activity

FIG. 9. “Encephalogram” for the cart-pole-
control. The self-developing network was used,

L when the optimal control regime was found it
0 2 4 6 0 2 4 6 contained 26 neurons, but on the resulting chaotic

¢ t attractor only seven of them were used. Paf@ls
T c) T d) and(b) show the temporal activity for two of the
neurons(1l when control was performed by this
neuron and 0 otherwisePanelgc) and(d) show
corresponding autocorrelation functions. Plots
show both determinism and randomness.

a.5

C(t)

Lyapunov exponents\; ;>0 with close values\;=N\,. control. Some examples of application of these techniques
Since the values of depend ort andb, which were varied are presented in the paper. We have also discussed possible
during control, the observed values cannot be related to problems that can arise during such applications. This coding
single linear problem. Typical values were between 0.4 andechnique in reinforcement learning with growing networks

0.65. appears to be efficient in controlling unstable equilibria. We
considered only one of the simplest neural network imple-
VI. “ENCEPHALOGRAM” FROM A NEURAL mentations of reinforcement learning. There are many others,
CONTROLLER. with different types of neural networks, as described, e.g., in
[2,1,19,15.

An important way of brain studies involves recording its e would like to point out that in reinforcement learning,
electrical activities and subsequent analysis of these recorgnaos in principle may be a part of the learning process.
ings. We also made such recordings for the controlling netaccording to Freeman, chaos may be important for the
work. We chose one of the neurons and when it was activgrain’s ability “to generate insight and the trials of trial and
we set the activity signal to 1, and 0 otherwise. The exampleg qr problem solving”[6]. In RL such “insight” is pro-
of such activity recprd for two neurons from the network Oflvided by exploration with partially random policiésf. Secs.

26 and corresponding autocorrelation functions are shown ify gnq v). Similarly, one can generatechaotic policyby
Fig. 9. _ using a chaotic dynamical system instead of a random signal.

The recordings show the presence of both randomnes§ote that some investigators have already attempted to use
(autocorrelation function decayand some regularitistrong  chaotic signals for solving optimization problems during
high-frequency periodic compongntt is hard to make any |earning of neural networks, e.d26]. As our preliminary
direct comparisons with the activities of a real nervous systegyits show, RL may work well with such chaotic explora-
tem, but perhaps this observation may be pursued further ifion It one builds a chaotic system into neural controller,
connection with brain chaoticity detected by electroencephagen purely deterministic system will be able to produce ran-
logram (EEG). domlike policies. We hope to present a more detailed study

of the subject in our next paper.
VIlI. CONCLUSIONS

Discrete control is use.d in some machlne—lgarnlng ACKNOWLEDGMENTS
schemes. When the control is used to keep a dynamical sys-
tem in the vicinity of an asymptotically unstable equilibrium,  This work has been supported through a grant to M.K.A.
a typical outcome of the control problem is the creation of afrom the Defense Research Establishment Suffield under
chaotic attractor. Thus, we have an effect that we may calContract No. W7702-8-R745/001/EDM. The authors also
“chaos with control.” It will be good to know if such chaos would like to thank Dr. Simon Barton for his continuing
with control appears in the activities of the brain. support and helpful discussions. The work was carried out
There are methods in machine learning and artificial neuusing computing facilities provided by Multimedia Ad-
ral network theories that can find policies to perform such avanced Computational Infrastructuf@ACI ).
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APPENDIX A: EQUATIONS OF MOTION FOR

PHYSICAL REVIEW E 63 046215

To simplify notation let us denotéaking into account the

CART-POLE relations fore;)
We use the following notation: 24,
X, coordinate of cart centém) fi=gsing— m_lpe’
0, angle between the vertical and pole direction, for P
clockwise motion§>0 f : |
g=9.8, gravity acceleration (nf)s f,= McSQNX) Mol 2sin 0,
I=0.5, pole lengtHm) (me+my) — 2(mg+mp)
m,=0.1, mass of the polékg)
m.= 1.0, mass of the carkg) cl=2—|
Q1= —Mpb, friction in the axis of poleu,=5X 1076 3"
©,=— usgn(x), friction for the cart,u,=5x10 * .y
f, external force, which is applied to cart and has to bal- C,==—————Cos¥,
ance the polelf|=f, . and its sign depends on the present 2(m¢+mp)
state of the systenf,,,,=10 n.
First let us consider the cart-pole system moving Withoutthen we get
friction. The kinetic energy of the system is . fi—f,cos0 . cyfy—Cofy
0= —————, X=———. (A7)
. 1 ., 1 ., 1ml?? myx6lcosd €1~ C, C0S0 €1~ C, C0S0
TpMX Ty mMpXth s T 2 The initial conditions used in this paper wesg0)
(A1) =x(0)=0(0)=0, 6(0)= g,7#0.
The gravitational potential energy is
APPENDIX B: PROOF OF THE EXISTENCE OF A
mygl coso POSITIVE LYAPUNOV EXPONENT FOR
U=s——7—7—. (A2) PERTURBED MAPPING

2
The Euler-Lagrange equationsvith friction and control

terms addedare as follows.
(1) Equation for the pole

o . .
m,l <6 _ m,gl sin@ 3 xmpl cosé

3 > 5 +f+ ¢ (A3)
or
2 g sino— cosg+ 22 A4
3 =gsinf—xcos ol (A4)
(2) Equation for the center of mass,
. d 16 cosé
mcgX+ mpa X+ 5 =@ (A5)

or
.Ml .
(mc+mp)x+7(ecose—0 sinf)=f+¢,. (A6)

Equations(A4) and (A6) can be rewritten as the following
system:

.2l 2
cosf-x+ —60=gsinf— e

3 mpl’
mplcosd . f+o; m,l sing 52
2(mg+mg) " (mg+mp)  2(mg+mp)

Lemma Let the linear dynamical system,, ;=Buy, B
= const have at least one positive Lyapunov exponent
>0. Then the system

Uiy1= (B €Cyuy (BY)

also has at least one positive Lyapunov exponent provided
the perturbationC, is bounded,|C,/]<c and € is small
enough.

Proof. For the sake of simplicity let us suppose that the
eigenvalues oB are real and nondegenerate, and there is
basis of its eigenvectors,,- - -,e, with eigenvalued,- -

. ,ln, ||i|:e)\i. Let v=ake; t+ bkgk, gkespar{ez, e ,en}
and|gy/=1. Then
Uk+1:BUk+ eCkvk=|1akel+ kagk+ ECkUk. (BZ)

On the other hand, we havey,;=ax 1611t bk 10k+1,
|Gk+al=1 .

Now we need the estimates [af, , ;| and|b,.,|. To ob-
tain these estimates, we decompose the perturbation term
eCyv by using the linearly independent but in general non-
orthogonal vector®; andg,,; . Due to nonorthogonality,
absolute values of components may be greater than the
length of vector itself. Let? be the angle betweee, and
Ok+1. If €Cop=ae;+ Bors1, then |eCyv|?=a?+ B?
+2apBcosh and|al,|B|<|eCyvy|/1—|cosd|. Let

vi-=|(er-9)l,

min
gespade,, ..., entlgl=1

r=

then|al,| B|<|eC\v\|/r for anyg,.
From Eg.(B2) we immediately obtain

046215-14
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s 1| =[] — er “HC =[] — er “te(|a ] +[by),
b 1| <[lobi] +er THCw | <|lobil +er "te(|ay +[by).
Let us choose the initial data, such thajag|>|by|, and

Kk=by/a, or by=ka,. Suppose thak,<q, where 0<q
<1 — a fixed number. Then

|bys1] _ [l +er te(1+ ki)
Akl 1] —er te(1+ k)

|Kk+1|:

providede is sufficiently small,

r(|l,—1l r
6<q (|14] |2|)ZQ_

N @h2
2c Zc(e e).

(B3)

Therefore, for thise the inequality| x| <q holds for anyk.

Since |vy|<|ay|+|b=(1+0q)|a<2|a], we obtain
lay s 1|=]11a] — ec2|a | =(e*1—2ec)|ay|. If er1—2ec>1
or

-1
2c ’

e<

then|a,| will grow exponentially.

PHYSICAL REVIEW E63 046215

Finally, sincelv,|=|a,| —|b=(1—q)|ay/, it should also
grow exponentially, which gives

1
IimEIn|vk|> In(e*1—2ec)>0,

k— oo

(B4)

and, according to Lyapunov theorems, the systé®i)

should have at least one positive Lyapunov exponent, pro-

vided

eh—1 qr

AN AN
2c ’ZC(el e

e<min

If the multiplicity of the Lyapunov exponent; for B is
greater then 1, this proof can be repeated with replagjritg
an evolving vectof, belonging to invariant subspace for,
while g, belongs to its complementty always can be chosen
such that the relation® f,|>e1 and|Bg|<e* hold, where
w is the largest Lyapunov exponent different from. [In-
equality for\; may arise, e.g., from matrices likg ), for
which norm grows ak|l|*.] If all Lyapunov exponents of
the unperturbed systeimy=A\, like in the Brusselator prob-
lem, then Eq.(B4) follows directly from Eg.(B2) with
weaker condition fole. This completes the proof.
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